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Transformations of Lagrangians and closed orbits

Alain Albouy1 and Lei Zhao2

1 Observatoire de Paris et CNRS, Paris, France
2 University of Augsburg, Augsburg, Germany

Let us call a natural Lagrangian a Lagrangian of the form T + U , where
U is a function on a configuration space and T is a positive definite quadratic
form on the tangent space. At the end of the XIXth century, independent ex-
amples related to the Kepler problem, found by Halphen [7] and Goursat [6],
led to the study of the “Transformation of the equations of Dynamics" (see
e.g. Painlevé [8]). Such transformation is essentially a change of time in a
natural Lagrangian that gives another natural Lagrangian.

Independently, Darboux [4] generalized to the surfaces of revolution a
famous question by Bertrand [2] about the central forces in the plane. He
solved the “main part” of his question. His solution was later completed by
the works of Zoll [10], and more recently by Zagryadskiı̌, Kudryavtseva and
Fedoseev (see e.g. [9]).

However, the following observation escaped Darboux and his followers:
the “main part” of the solution, that Darboux described by simple rational
formulas, consists in the “transformations” of the Lagrangian of the Kepler
problem. The transformations are Appell’s central projection [1] and Dar-
boux’ inversion [5], which changes the Lagrangian T+U into the Lagrangian
UT + 1/U .

Fig. 1. Lagrangians with closed orbits on surfaces
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Hopefully this result will attract again the attention on these “transfor-
mations”, which indeed are quite forgotten today (see however Borisov and
Mamaev [3]).
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Multi-robot control strategies for monitoring a dynamically
changing flood area

Yang Bai and Mikhail Svinin

College of Information Science and Engineering, Ritsumeikan University, Kyoto,
Japan

This paper deals with utilizing multiple aerial robots to monitor a dy-
namically changing flood area. The problem requires developing a control
strategy for the robots such that the motion of the complete flood area can be
caged, tracked, and covered (see Fig. 1). The strategy consists of two stages:
a caging stage and a covering stage. Correspondingly, the robots are divided
into two groups: one for caging, referring as the boundary drones; the other
for covering, referring as the inner drones. In the caging stage, boundary
drones are uniformly distributed along the edge of the dynamic flood area,
tracking its propagation with the use of a vision-based controller (based on
the image segmentation).

Fig. 1. Tracking a dynamically changing flood area (left) with the use of potential
fields and centroidal Voronoi tessellation and density functions (right)

In the covering stage, inner drones are allocated in interior region of the
flood zone, achieving an optimal coverage efficiency. An optimal configu-
ration of the robots is generated with the use of Voronoi diagram over the
coverage area, which maximizes the coverage efficiency by driving agents to
the centroids in corresponding Voronoi cells. The construction of the Voronoi
diagram takes into account possible obstacles. The relative importance of
the region points is modeled by (possibly multiple) density functions. To
address both adaptiveness and stability of the coverage control, a function
approximation-based coverage controller has been developed [1]. The asymp-
totic stability of the controller was established, and its validity was demon-
strated by simulations in ROS/Gazebo programming environment [2].
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KAM Tori in generic nearly-integrable Mechanical Systems

Luca Biasco and Luigi Chierchia

Department of Mathematics and Physics, Roma Tre University, Roma, Italy

We investigate the existence of Lagrangian invariant tori for nearly-integ-
rable mechanical systems with Hamiltonian 1

2 |y|2 + εf(x), f being a generic
real-analytic potential; here (y, x) ∈ R

n × T
n are standard symplectic vari-

ables and the phase space is any bounded region times T
n. The following

statement hold:

Away from a neighbourhood R of double resonances, the phase space is
filled with maximal KAM tori up to an exponentially small (in 1/εa) set. The
“non perturbative set” R has a measure smaller than ε| log ε|b for a suitable
b > 0.

In the talk I will discuss this result and sketch the mains steps needed to
prove it.
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Normal forms and averaging in an acceleration problem
in nonholonomic mechanics

Sergey Bolotin

Moscow Steklov Mathematical Institute, Moscow, Russia
University of Wisconsin, Madison, USA

We discuss unlimited growth of momentum in nonholonomic systems
(Chaplygin’s sleigh and Suslov’s system) with periodically varying mass dis-
tribution. It is proved that, depending on the choice of the parameters, the
momentum may grow as tk with k = 1, 2, 3. The proof uses normal forms
and averaging in a slightly unusual form. The talk is based on a joint work
with I. Bizyaev and I. Mamaev.
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A top on a vibrating base: new integrable problem
of non-holonomic mechanics

Alexey Borisov and Alexander Ivanov

Moscow Institute of Physics and Technology, Dolgoprudny, Russia

A spherical rigid body, rolling without sliding on a horizontal support,
is considered. The body is axially symmetric but unbalanced (tip-top). The
support performs high-frequency oscillations with small amplitude. To imple-
ment standard averaging procedure, we present equations of motion in quasi-
coordinates in Hamiltonian form with additional terms of non-holonomy [1]
and introduce new fast time variable. The averaged system is similar to the
initial one with an additional term, known as vibrational potential [2–4]. This
term depends on the single variable — the nutation angle, and according Chap-
lygin research [5], the averaged system is integrable. Some examples exhibit
influence of vibrations on the dynamics.
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Energy transport in 1-D Hamiltonian lattices
with applications to physics and engineering

Anastasios Bountis

Department of Mathematics, University of Patras, Patras, Greece
Centre of Integrable Systems, P.G. Demidov Yaroslavl State University, Yaroslavl,

Russia

Talk presented at the International Conference “Regular and Chaotic Dy-
namics”, November 22–December 3, Steklov Mathematical Institute, Moscow,
dedicated to the memory of Professor Alexey Borisov.

Regular and chaotic dynamics of 1-D Hamiltonian lattices of N interact-
ing particles has been extensively studied for more than 60 years, in view of
its important applications to statistical mechanics and solid state physics [1].
Most studies have focused on analytic particle interactions, ranging from near-
est neighbor to full range, often in the presence of on-site potentials [2]. En-
ergy transport in such systems under periodic driving at one end of the lattice
has revealed the important phenomenon of supratransmission, see e.g. [2, 3].
In the present lecture, I will first describe an approach from local to global
dynamics in these systems as the total energy is increased. Next, I will apply
this approach to 1-D Hamiltonian lattices that arise in mechanical engineering
applications, such as graphene elasticity, Hollomon’s law of “work harden-
ing”, under viscous or hysteretic damping. These involve nearest-neighbor
interactions that are: (a) either purely non-analytic, (b) harmonic plus non-
analytic or (c) analytic with non-analytic hysteretic damping effects [4, 5].
Finally, I will discuss energy transport in these systems, such as wave packet
propagation and supratransmission, under periodic driving that includes addi-
tive noise effects [6].
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Libration points inside a spherical cavity
in a uniformly rotating gravitating ball

Alexander Burov1, Vasily Nikonov1 and Ekaterina Shalimova2

1 FRC CSC RAS & HSE University, Moscow, Russia
2 Lomonosov Moscow State University, Moscow, Russia

Relative equilibria of a material point in the field of attraction of a ho-
mogeneous ball with a spherical cavity are considered. It is assumed that the
ball uniformly rotates around an axis perpendicular to the axis of symmetry
of the body and passing through its center of mass. Families of relative equi-
libria (libration points) located inside the cavity both in the absence and in the
presence of dry friction are studied. Stability and bifurcations of the found
equilibria families are studied.

This investigation continues the cycle of studies devoted to the relative
equilibria of a material point in the gravitational field of uniformly rotating
objects. Studies of libration points located at a distance from rotating gravi-
tating objects were undertaken in particular in publications of V. V. Beletsky
& A.V. Rodnikov, and I.I. Kosenko (see, e.g., [1–4]). Relative equilibria that
are not isolated due to the presence of dry friction were studied for model
examples in [5, 6] and for celestial bodies in [7, 8].

General methods for investigating the existence and stability of equilibria
in the presence of dry friction have been developed in [9–11]. The general
theory of bifurcations of families of non-isolated equilibria has been devel-
oped in publications [12–15] (see also [16]).
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Quasi-periodic attractors for dissipative systems
in Celestial Mechanics

Alessandra Celletti

Department of Mathematics, University of Rome Tor Vergata, Rome, taly

The existence of invariant tori using Kolmogorov– Arnold – Moser (KAM)
theory has been proven in several models of Celestial Mechanics through
dedicated analytical proofs combined with computer-assisted techniques. Af-
ter reviewing some of such results, obtained in conservative frameworks, I
present a recent result on the existence of invariant attractors for a dissipative
model: the spin-orbit problem with tidal torque. This model belongs to the
class of conformally symplectic systems, which are characterized by the prop-
erty that they transform the symplectic form into a multiple of itself. Finding
the solution of such systems requires to add a drift parameter. I will describe a
KAM theorem for conformally symplectic systems in an a-posteriori format:
assuming the existence of an approximate solution, satisfying the invariance
equation up to an error term — small enough with respect to explicit condition
numbers, — then we can prove the existence of a solution nearby. The theo-
rem, which does not assume that the system is close to integrable, yields an
efficient algorithm to construct invariant attractors for the spin-orbit problem
for astronomically relevant values of the parameters. It also provides accu-
rate estimates of the breakdown threshold of the invariant attractor. This talk
refers to joint works [1–3] with R. Calleja, J. Gimeno, and R. de la Llave.

References

[1] Calleja R., Celletti A., Gimeno J., de la Llave R. Efficient and accurate KAM
tori construction for the dissipative spin-orbit problem using a map reduction //
Preprint, 2021, https://arxiv.org/abs/2106.09175

[2] Calleja R., Celletti A., Gimeno J., de la Llave R. KAM quasi-periodic tori for the
dissipative spin-orbit problem // Preprint, 2021, https://arxiv.org/abs/2107.02853

[3] Calleja R., Celletti A., Gimeno J., de la Llave R. Break-down threshold of invari-
ant attractors in the dissipative spin-orbit problem // Preprint, 2021.

20



Elliptic fixed points with an invariant foliation:
some facts and more questions

Alain Chenciner1, David Sauzin2, Shanzhong Sun3 and Qiaoling Wei3

1 IMCCE (Paris Observatory) and University Paris 7, Paris, France
2 IMCCE (Paris Observatory) and CNRS, Paris, France

3 Capital Normal University, Beijing, China

We address the following question: let F : (R2, 0) → (R2, 0) be a lo-
cal analytic diffeomorphism defined in the neighborhood of the non-resonant
elliptic fixed point 0 and let Ψ be a formal conjugacy to a normal form N .
Supposing that F leaves invariant the foliation by circles centered at 0, what
is the analytic nature of Ψ and N? The motivation comes from two examples
of such local diffeomorphisms related to 1-parameter subfamilies of Arnold’s
family of analytic diffeomorphisms of the circle. An interesting technical fea-
ture is the use of results coming from the theory of holomorphic maps in one
complex variable.
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Resonance of ellipsoidal billiard trajectories
and extremal rational functions

Vladimir Dragović

Department of Mathematical Sciences, The University of Texas at Dallas,
Richardson, TX,

USA, Mathematical Institute, Serbian Academy of Sciences and Arts, Belgrade,
Serbia

We study resonant billiard trajectories within quadrics in the d-dimensional
Euclidean space. We relate them to the theory of approximation, in particular
the extremal rational functions on the systems of d intervals on the real line.
This fruitful link enables us to prove fundamental properties of the billiard dy-
namics and to provide a comprehensive study of a large class of non-periodic
trajectories of integrable billiards. A key ingredient is a functional-polynomial
relation of a generalized Pell type. Applying further these ideas and tech-
niques to s-weak billiard trajectories, we come to a functional-polynomial
relation of the same generalized Pell type. This is a joint work with Milena
Radnović.
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Magnetic Chaplygin systems
and generalized Demchenko case

Vladimir Dragović1,2, Borislav Gajić2 and Božidar Jovanović2

1 Department of Mathematical Sciences, UTD, Dallas, USA
2 Mathematical Institute SANU, Belgrade, Serbia

We describe the gyroscopic and the magnetic Chaplygin systems on fiber
spaces and the reduction procedure for the corresponding G-Chaplygin sys-
tems. We derive the equations of motion of the reduced gyroscopic and
magnetic G-Chaplygin systems. We introduce a problem of rolling of a ball
with the gyroscope without slipping and twisting over a plane and a sphere
in Rn, n > 3 as examples of magnetic SO(n)-Chaplygin systems. Specially
the generalized Demchenko case in Rn is defined as the system (ball + gy-
roscope) without twisting when its inertia operator is SO(n)-invariant. The
reduced system represents the magnetic geodesic flow on a sphere Sn−1 en-
dowed with the round-sphere metric, under the influence of the homogeneous
magnetic field. We prove complete integrability of the generalized Dem-
chenko system without twisting for n = 3 and n = 4, perform an explicit
integration in elliptic functions, and provide the case study of the solutions in
both cases.
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The Lagrange Top and the general confluent Heun equation

Holger Dullin, Diana Nguyen and Sean Dawson

School of Mathematics and Statistics, University of Sydney, Sydney, Australia

It is difficult to say anything new about the Lagrange top after the com-
prehensive analysis by Klein and Sommerfeld and the more modern and suc-
cinct treatment of Borisov and Mamaev. We would like to point out that the
quantisation of the Lagrange top (after the addition of a quadratic potential)
leads to the most general confluent Heun equation, also known as generalised
spheroidal wave equation. In physics this equation is known as Teukolsky’s
master equation, which appears in the perturbation theory of Kerr black holes.
We recall that the Lagrange top has two global S1 symmetries generated by
the corresponding action variables. The third, non-trivial action variable is
not globally defined and exhibits Hamiltonian monodromy. We conclude that
the generalised spheroidal wave equation exhibits quantum monodromy in its
joint spectrum.
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On the dynamics of a heavy ball
that rolls on a rotating surface of revolution

Francesco Fassò

Dipartimento di Matematica “Tullio Levi-Civita”, University of Padua, Padua, Italy

We report on some results (obtained with M. Dalla Via, P.E. Petit Valdes
Villareal and N. Sansonetto [1, 2]) on the dynamics of the class of nonholo-
nomic mechanical systems formed by a heavy symmetric ball that rolls with-
out sliding on a surface of revolution, which is either at rest or rotates about
its (vertical) figure axis with uniform angular velocity Ω.

This is a subject whose first studies go back over a century and to which
A. Borisov and his collaborators have given profound contributions.

In this talk, exploiting the existence of a conserved ‘moving energy’,
we give conditions on the profile of the surface, and its rotational speed, that
ensure the periodicity of the reduced dynamics and hence the quasi-periodicity
of the unreduced dynamics on tori of dimension up to three. In particular, we
show that the rotation of the surface has a ‘stabilizing’ effect on the dynamics.

Furthermore, we determine the equilibria of the reduced system, classify-
ing them in three families, and determine their stability properties.
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A Darboux–Lax scheme for discrete integrable equations

Xenia Fisenko1, Sotris Konstantinou-Rizos1 and Pavlos Xenitidis2

1 P.G. Demidov Yaroslavl State University, Yaroslavl, Russia
2 Liverpool Hope University, Liverpool, UK

In this talk, we consider an important class of nonlinear difference equa-
tions on quad-graphs and present a novel method for constructing soliton
solutions to them.

Quad-graph equations arise as the compatibility condition around the
square of Darboux transformations for integrable nonlinear PDEs and serve
as integrable discretisations of the latter. The importance of quad-graph
equations is that one can construct solutions to them using simple algebraic
schemes. Then, solutions to the associated nonlinear PDEs can be derived via
continuum limits.

For those equations on quad-graphs which have the 3D-consistency prop-
erty, one can algorithmically construct a Lax representation and also a Bäcklund
transformation. However, not all quad-graph equations are 3D consistent. We
present a new Darboux–Lax scheme for constructing solutions to equations
on quad-graphs which have a Lax representation but are not necessarily 3D
consistent.
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Platonic solids and symmetric solutions of the N -vortex
problem on the sphere

Carlos Garcı́a-Azpeitia1 and Luis Garcı́a-Naranjo2

1 Departamento de Matemáticas y Mecánica, IIMAS-UNAM, Mexico City, Mexico
2 Dipartimento di Matematica “Tullio Levi-Civita”, University of Padua, Padua,

Italy

We consider the N -vortex problem on the sphere assuming that all vor-
tices have equal strength. We develop a theoretical framework to analyse
solutions of the equations of motion with prescribed symmetries. Our con-
struction relies on the discrete reduction of the system by twisted subgroups of
the full symmetry group that rotates and permutes the vortices. Our approach
formalises and extends ideas outlined previously by Tokieda [3] and Soulière
and Tokieda [2] and allows us to prove the existence of several 1-parameter
families of periodic orbits. These families either emanate from equilibria or
converge to collisions possessing a specific symmetry. Our results are applied
to show existence of families of small nonlinear oscillations emanating from
the Platonic solid equilibria. The talk is based on the preprint [1].
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On topological classification of dynamical systems
with hyperbolic nonwandering sets

Vyacheslav Grines

HSE University, N. Novgorod, Russia

According to S. Smale, a hyperbolic non-wandering set NW (f) of a
diffeomorphism f : Mn → Mn with dense set of periodic points in NW (f)
(Mn is a closed smooth manifold), is represented as a finite union of invariant
closed sets, each of which contains a transitive orbit. These sets are called
basic.

If the dimension of some basic set Λ of a diffeomorphism f is greater
than one and coincides with the dimension of the supporting manifold Mn

(n > 1), then Λ is unique and coincides with the whole manifold Mn. In
this case, the diffeomorphism f is a diffeomorphism of D. Anosov. It follows
from works of J. Franks and S. Newhouse, that if the dimensions of unstable
or stable manifolds of points from Λ are equal to one, then the ambient
manifold Mn is n-torus.

If the dimension of a basic set Λ of a diffeomorphism f is n− 1, then Λ
is either attractors or a repeller. The author of the report and E.V. Zhuzhoma
have proved that if the non-wandering set of a structurally stable diffeomor-
phism f contains an orientable attractor (repeller) whose dimension is n-1
and coincides with the dimension of the unstable (stable) manifolds of its
points, then the ambient manifold Mn is n-torus. Moreover, it was described
recently by E. Zhuzhoma, V. Medvedev and the author of the report the topo-
logical structure of manifolds Mn (n > 2) admitting diffeomorphisms whose
non wandering set consists of orientable expanding attractor and attracting
repellers of dimension n− 1.

If n = 2, then there is NW -stable diffeomorphism f on surface M2

of any genus whose non-wandering set contains one-dimensional basic sets.
Moreover, the topological structure of embedding them to ambient surface
and dynamics of f are connected with the properties of basic sets and genus
of ambient surface.

The report will be devoted to discussion of described results above and
their application to the topological classification of structurally stable cas-
cades on manifolds. To introduce with the topic of the report see books [1–3].

The report was prepared under support of the Laboratory of Dynamical
Systems and Applications NRU HSE, grant of the Ministry of science and
higher education of the RF no. 075-15-2019-1931.
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Integrable maps on Stiefel manifolds

Božidar Jovanović

Mathematical Institute, Serbian Academy of Sciences and Arts, Belgrade, Serbia

We study integrable discretizations of geodesic flows of Euclidean met-
rics and of the Neumann systems on Stiefel manifolds Vn,r. In particular,
starting from the discretization of the geodesic flow for n = 3, r = 2, after
identifying V3,2

∼= SO(3), we obtain a discrete analogue of the Euler case
of rigid body motion corresponding to the inertia operator I = (1, 1, 2). On
the other hand, starting from the discrete Neumann system on V3,3 = SO(3),
but taking a different continuous limit, we have a well known Moser-Veselov
discretization of the Euler top. In addition, billiard-type mappings are consid-
ered, one of them turns out to be the “square root” of the discrete Neumann
system on Vn,r. The results are obtained jointly with Yuri Fedorov (UPC,
Barselona).
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Experimental verification of the models
of various robotic systems

Yury Karavaev

Kalaschnikov Izhevsk State Technical University, Izhevsk, Russia

The paper presents the results of the experimental investigations of var-
ious mechanical and robotic systems. Due to the verification of the motion
of simple systems, such as a rolling disk [1], a rolling ring [2], a spherical
body with a displaced center of mass [3], it was possible to determine the
limits of applicability of nonholonomic models of motion. A modification of
nonholonomic models by introducing rolling resistance allows to implement
them for description of spherical robots of different designs. Various modifi-
cations of spherical robots are described and their features and disadvantages
are discussed: a spherical robot with internal rotors [4], a spherical robot
with an internal omniwheel platform [5,6], a spherical robot with a combined
propulsion device [7–9].

The features of the practical implementation of models of mobile wheeled
robots are also considered in the paper and algorithms for their control are
proposed [10, 11].

In addition, the aquatic robots that implement screwless motion in a liquid
are also considered. [12–14].

All discussed prototypes were fabricated in the Udmurt State University
and in the laboratory of Mobile Systems of Kalashnikov Izhevsk State Tech-
nical University, and experimental studies were carried out.

The work was carried out within the framework of the state assignment
of the Ministry of Education and Science of Russia (FZZN-2020-0011).
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Irregular solutions in the spatially distributed
Fermi–Pasta–Ulam problem

Sergey Kashchenko and Anna Tolbey

Regional Scientific and Educational Mathematical Center
of the P.G. Demidov Yaroslavl State University, Yaroslavl, Russia

It is shown that various partial differential equations in the spatially dis-
tributed Fermi–Pasta–Ulam problem arise while describing the leading ap-
proximations of solutions in different domains of the phase space of the
boundary value problem.

Special nonlinear boundary value problems are constructed to find the
slowly varying amplitudes. Two cases differ. These boundary value problems
are different for each of these two cases. In the first of them, the systems of
two Schrödinger equations were obtained, in contrast to the second case where
the system of two Korteweg – de Vries equations was obtained. Asymptotic
representations of the irregular solutions contain superposition of functions
depending on all of the following: the ‘slow’ time , the ‘medium’ time and
‘fast’ time. In addition, they contain periodic with respect to the spatial
variables and rapidly oscillate components.

It follows formulas that the mutual influence of the functions ξ+ and
ξ− leads only to the phase components change. If δ = 2πn0, then this
influence is much weaker [1] when the higher infinitesimal order terms in the
corresponding boundary value problems are taken into account. Therein, one
can trace some analogies with the conclusions from [2–5].

A moving in one direction wave affects mainly only on the phase coordi-
nate of a wave moving in the opposite direction. In this regard, a number of
conclusions from the theory of solitons remain valid for irregular waves. We
note also that the mutual effect of waves on each other differs significantly
from the regular case.

This work was supported by the Russian Science Foundation (project No.
21-71-30011).
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Hamiltonian geometry and the golden ratio
in the Euler hydrodynamics

Boris Khesin

University of Toronto, Toronto, Canada

The binormal (or vortex filament) equation provides the localized induc-
tion approximation of the 3D incompressible Euler equation. We present a
Hamiltonian framework for the binormal equation in higher-dimensions and
its explicit solutions that collapse in finite time. More generally, we also de-
scribe the geometry behind Newton’s equations on infinite-dimensional con-
figuration spaces of diffeomorphisms and smooth probability densities. On
the other hand, by going to lower dimensions, we observe a curious appear-
ance of the golden ratio in the motion of point vortices in the plane. This is a
joint work with C.Yang and H.Wang.
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Two problems of spherical bodies rolling
on a vibrating plane

Alexander Kilin and Elena Pivovarova

Ural Mathematical Center, Udmurt State University, Izhevsk, Russia

Recently, the dynamics of rigid bodies on nonstationary surfaces, for ex-
ample, rotating or vibrating ones, has attracted the attention of many re-
searchers from all over the world. The motion of bodies on moving surfaces
can be accompanied by various interesting dynamical phenomena. For exam-
ple, in the case of a vibrating surface, the phenomenon of energy harvesting
can be observed, which is described in the papers [1,2] concerned with rattle-
back dynamics. In this work we consider two problems of the rolling motion
of spherical bodies on a vibrating plane [3, 4].

The first problem is related to the motion of a Chaplygin sphere rolling
without slipping on a plane performing horizontal periodic oscillations. For
this problem we show that in the system under consideration the projections of
the angular momentum onto the axes of the fixed coordinate system remain
unchanged. The investigation of the reduced system on a fixed level set
of first integrals reduces to analyzing a three-dimensional period advance
map on SO(3). The analysis of this map suggests that in the general case
the problem considered is nonintegrable. We find partial solutions to the
system which are a generalization of permanent rotations and correspond
to nonuniform rotations about a body- and space-fixed axis. We also find a
particular integrable case which, after time is rescaled, reduces to the classical
Chaplygin sphere rolling problem on the zero level set of the area integral.

The second part of the work addresses the problem of a spherical robot
having an axisymmetric pendulum drive and rolling without slipping on a
vibrating plane. It is shown that this system admits partial solutions (steady
rotations) for which the pendulum rotates about its vertical symmetry axis.
Special attention is given to problems of stability and stabilization of these
solutions. An analysis of the constraint reaction is performed, and parameter
regions are identified in which a stabilization of the spherical robot is possible
without it losing contact with the plane. It is shown that the partial solutions
can be stabilized by varying the angular velocity of rotation of the pendulum
about its symmetry axis, and that the rotation of the pendulum is a necessary
condition for stabilization without the robot losing contact with the plane.

The work was carried out within the framework of the state assignment
of the Ministry of Education and Science of Russia (FEWS-2020-0009).
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Some problems about the dynamics of vortex pairs
on surfaces

Jair Koiller

Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil

We suggest the idea that, like geodesics on a surface S with Rieman-
nian metric g, the motion of a pair of opposite vortices could be useful for
differential geometry in the large [1] — only more so.

While geodesic equations are local, vortex equations require the Green
function G(s1, s2) of the Laplace–Beltrami operator, thus reflecting the topol-
ogy and geometry of the whole surface.

This is the case even for close by vortex pairs. For short times they
shadow the geodesic flow with initial condition at the midpoint, as predicted
by Y. Kimura in 1999 [2] and experimentally verified on the triaxial ellipsoid
in [3]. But on a long time scale there is a slow drift proportional to to the
square of the distance to the diagonal. Near the diagonal the energy levels
are of contact type — thus containing periodic orbits, by Taubes’ theorem for
three dimensional contact structures.

We start by reviewing some result we published in RCD for genus 0
surfaces [4]. Not much is yet known about the vortex pair motion farther away
from the diagonal. For genus 1 all the required machinery is available [5],
but for genus ≥ 2 (automorphic surfaces) numerical experiments are in order
to develop intutitions. Some results on Bolza’s surface will be discussed [6].
Finally we suggest some problems for research, hoping to attract interest to
the geometric analysis and to the symplectic geometry communities.

Some background information: Let S a Riemann surface with a specified
metric g within a conformal class, with area form ω. We consider two oppo-
site vortices moving in S. The symplectic form and Hamiltonian in S × S
are given by

Ωpair = π1 ∗ ω − π2 ∗ ω , (πi the projections)

H = −G(s1, s2) +
1

2
(R(s1) +R(s2) .

Robin’s functionR(s) is the regularization R(s) = lims′→s G(s, s′)−d(s, s′).
Near the diagonal it is useful to rescale the Hamiltonian as F = exp(−H),
that can be written as

F (s1, s2) = d(s1, s2) exp(B(s1, s2)) = d(s1, s2)(1 +O(d2)),
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where B, that we call Batman’s function, is given by

B(s1, s2) = [G(s1, s2)− ln d(s1, s2)]−
1

2
(R(s1) +R(s2)).

Two routes to study the dynamics near the diagonal are via the pullbacks of
Ωpair either by

Esympl : vs ∈ TS → (s,s+) ∈ S × S, s± = exp(±Jvs), J = π/2 rotation

Efolded : (vs, α) ∈ T 1S × [−r, r] → (s−, s+), s± = exp(s,±αJvs), |vs| = 1.

In the former approach one introduces a scaling parameter, s± = exp(±εJvs)
and one expands the pullback in powers of ε making the problem amenable
to Hamiltonian perturbation theory.

In the latter, 2r is the injectivity radius, and we show that M = T 1S ×
[−r, r] is a folded symplectic space and we describe its symplectic form via
Jacobi fields along the geodesic joining s−, s+.

Near the diagonal

F = 2α exp (B(−α, α)) = 2α (1 +m2(vs)α
2 +O(α4)), vs ∈ T 1S

where m2 = Q(s)(vs, vs) is the quadratic term in the expansion of

B(s−, s+) = B(−α, α) = Q(s)(vs, vs)α
2 + · · · .

This function m2 reflects the global influence in the perturbation of the
geodesic system. In this sense a vortex dipole is a “topology sensor”.

As an indication for this, we provide estimates on Green, Robin and
Batman functions in terms of the injectivity radius rS of the metric and first
eigenvalue λ1 of the hyperbolic Laplacian. Green functions transform nicely
under conformal change of metrics. We think there are opportunities for
research also for a Teichmüler theorist.

This is ongoing work with A.Regis, C. Castilho, C. Ragazzo, U. Hryniewicz,
A. Cabrera and A.Aryasomayajula.

We dedicate this work to the memory of Alexey Borisov. We believe
point vortices was one of his favorites themes, among many others of his
interest. I counted fifteen papers on point vortices only in RCD.

Alexey visited Rio de Janeiro and Recife in 2011 and even before he was
already a very good friend of Brazilian mathematics and Brazilian music. We
are much indebted to him.
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Integrals of circulatory systems
which are polynomial in momenta

Valery Kozlov

Steklov Mathematical Institute of RAS, Moscow, Russia

By circulatory systems one often means mechanical systems acted upon
by nonpotential positional foces. The theory of circulatory systems is usu-
ally concerned with problems of the stability and bifurcations of equilibria
and steady motions (taking into account additional gyroscopic and dissipative
forces). This paper discusses the first steps in the theory of integration of
circulatory systems. A treatment is given of a range of problems concerning
conditions for the existence of first integrals, polynomial in momenta, with
single-valued coefficients on configuration space. Topological obstructions
to the existence of such integrals are found. Special attention is given to
quadratic integrals. If the kinetic energy is “Euclidean”, then the existence
of a nondegenerate quadratic integral allows the equations of motion to be
reduced to Hamiltonian form. In the case of the “Liouvillian” kinetic energy,
the equations are reduced to conformally Hamiltonian form. General results
are illustrated by examples from the dynamics of circulatory systems.
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Symplectic classification of structurally stable
nondegenerate semilocal singularities

Elena Kudryavtseva

Moscow State University, Moscow, Russia;
Moscow Center for Fundamental and Applied Mathematics, Moscow, Russia

Some of the results are obtained in a collaboration with A. Oshemkov.
An integrable Hamiltonian system on a symplectic 2n-manifold (M,ω)

is given by a smooth map F = (f1, . . . , fn) : M2n → Rn, called the
momentum map, such that the functions fi are functionally independent and
pairwise in involution.

DEFINITION. Two integrable systems Fi : Mi → Rn, i = 1, 2, will
be called equivalent (resp. symplectically equivalent) if there exist a homeo-
morphism (resp. symplectomorphism) Φ : M1 → M2 and a homeomorphism
φ : Rn → Rn such that φ ◦ F1 = F2 ◦ Φ. The map Φ will be called an
equivalence (resp. symplectic equivalence) between the systems.

A point m ∈ M is called singular for F if rank(dF (m)) < n.
By the Vey theorem [5], in real-analytic case, each nondegenerate singular

point m0 ∈ M has a neighbourhood in which the system is symplectically
equivalent to a canonical system (R2n, ωcan, Fcan) whose momentum map
Fcan = (h1, . . . , hn) is defined by regular components hj = xj (1 � j � r),
elliptic components hj = 1

2 (x
2
j + y2j ) (r + 1 � j � r + ke), hyperbolic

components hj = xjyj (r + ke + 1 � j � r + ke + kh) and focus-focus
pairs of components hj = xjyj + xj+1yj+1 and hj+1 = xj+1yj − yj+1xj

(j = r + ke + kh + 2i − 1, 1 � i � kf ), where ωcan =
n∑

j=1

dxj ∧ dyj . We

say that the singular point m0 has Williamson type (ke, kh, kf ) [6, Def. 2.3].
Notice that r + ke + kh + 2kf = n and r is the rank of m0. Clearly, the

singular points of F in a small neighbourhoodU(m0) of m0 form ke+kh+kf
symplectic submanifolds {dhj = 0} ∩U(m0), j ∈ {r+ i}ke+kh

i=1 ∪ {r+ ke +

kh + 2i}kf

i=1 (called critical submanifolds of F on U(m0)).
The momentum map F naturally gives rise to a (singular) Lagrangian

fibration on M whose fibers are connected components of the level sets
F−1(a), a ∈ Rn. Consider the Hamiltonian Rn-action on M generated
by the momentum map F = (f1, . . . , fn) : M

2n → Rn. We will call orbits
of this action simply orbits. By a local (resp. semilocal) singularity of such a
singular fibration, we mean the fibration germ at a singular orbit (resp. fiber).
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DEFINITION. We say that a non-degenerate singular fiber L = F−1(a)
satisfies the connectedness condition if the number of connected critical sub-
manifolds of F on a neighbourhood of L equals the number of critical sub-
manifolds of F on a neighbourhood of each compact orbit O ⊂ L.

Theorem 1 (Semilocal structural stability test [2]). In real-analytic
case, any compact non-degenerate singular fiber L satisfying the connected-
ness condition is structurally stable under real-analytic integrable perturba-
tions (but not necessarily under C∞ integrable perturbations) of the system.
In other words, the integrable system (M,ω, F ) on a neighbourhood U(L) of
the fiber L is equivalent to the perturbed system (M, ω̃, F̃ ) on a slightly per-
turbed neighbourhood Ũ(L), for any (small enough) real-analytic integrable
perturbation of the system.

As an illustration, we obtain that a saddle-saddle singularity of the Ko-
valevskaya top is structurally stable under real-analytic integrable perturba-
tions (but not under C∞ perturbations).

Suppose that Li, i = 1, 2, and L are compact non-degenerate singular
fibres of real-analytic integrable systems (Mi, ωi, Fi), i = 1, 2, and a ref-
erence system (M,ω, F ), resp. Suppose the singularities at Li are equiv-
alent to the reference singularity at L, and Φi : U(L) → U(Li) is an
equivalence, with Φi(L) = Li. Consider the Hamiltonian (S1)r+ke+kf -
action near L generated by the corresponding components hj , j ∈ T :=

{1, . . . , r + ke} ∪ {r + ke + kh + 2i}kf

i=1, of the canonical momentum map
Fcan = (h1, . . . , hn) at a compact orbit O ⊂ L. Consider the reduced fiber
X = L/(S1)r+ke+kf .

Suppose that Φi is a real-analytic symplectomorphism near the orbit O,
i = 1, 2. We say that a symplectic equivalence Φ : U(L1) → U(L2) is good if
its restriction to a small neighbourhoodU(O1) of the orbit O1 = Φ1(O) ⊂ L1

coincides with the symplectomorphism Φ2 ◦ Φ−1
1 |U(O1).

If L1 satisfies the connectedness condition, we introduce the Lagrange-
Vey class of the singularity at L1 (w.r.t. the given reference singularity at L),
which is a 1-cocycle

βL1 ∈ H1(X,Z1/R) ∼= Hom(H1(X), Z1/R). (∗)

Here (Z1,+) is the group of converging (near the origin) power series in n
variables with real coefficients, vanishing at the origin, and R ⊂ Z1 is the
subgroup of rank ke + kf generated by the monomials zj , j ∈ T .

Theorem 2. Under the hypothesis from above, the singularities at L1

and L2 are symplectically equivalent via a good symplectic equivalence if
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and only if these singularities have the same Lagrange-Vey class (∗), i.e.
βL1 = βL2 . For each 1-cocycle [β] ∈ H1(X,Z1/R), there exists a semilocal
singularity L1 equivalent to L, whose Lagrange-Vey class is [β].

Note that Theorem 2 extends (the real-analytic versions of) the semilocal
symplectic classifications of simple Morse functions on compact symplectic
surfaces [1] and semitoric systems [3, 4].

Theorem 3. Under the hypothesis from above, suppose that there exists
a finite-sheeted covering of a neighbourhood of L that is fibrewise home-
omorphic to the direct product of several regular, elliptic, hyperbolic and
focus-focus semilocal singularities of dimensions 2, 2, 2 and 4, resp. Suppose
that all hyperbolic components (2-atoms) of this decomposition have genus 0.
Then the singularities at L1 and L2 are symplectically equivalent via a good
symplectic equivalence if and only if the map Φ2 ◦ Φ−1

1 preserves the action
variables.

Thus, the action variables form a complete set of semilocal symplectic
invariants.

This work was supported by the Russian Science Foundation (project
no. 17-11-01303).
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[4] Vũ Ngo. c S. On semi-global invariants for focus-focus singularities // Topology,
2003 vol. 42, pp. 365–380.
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Existence of liouvillian solutions in the problem of motion
of a heavy rigid body with a fixed point in the Hess case

Alexander Kuleshov1 and Boris Bardin2

1 Department of Mechanics and Mathematics, M. V. Lomonosov Moscow State
University, Moscow, Russia

2 Department of Information Technologies and Applied Mathematics, Moscow
Aviation Institute (national research university), Moscow, Russia

In 1890 German mathematician and physicist W. Hess [1] found new spe-
cial case of integrability of Euler – Poisson equations of motion of a heavy
rigid body with a fixed point. In 1892 P. A. Nekrasov proved [2] that the
solution of the problem of motion of a heavy rigid body with a fixed point
under Hess conditions reduces to integrating the second order linear differ-
ential equation. To obtain this equation we firstly derive the Euler – Poisson
equations in the special Kharlamov coordinate system [3, 4]. Using this form
of the Euler – Poisson equations we derive the corresponding linear differen-
tial equation and transform its coefficients to the form of rational functions.
Applying the Kovacic algorithm [5] to the obtained differential equation, we
proved that the liouvillian solutions of the corresponding second order linear
differential equation exists only in the case, when the moving rigid body is
the Lagrange top, or in the case, when the constant of the area integral is
zero [6].

This work was supported financially by the Russian Foundation for Basic
Research (grants no. 19-01-00140 and 20-01-00637).
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Resonances in the stability problems of a Thomson vortex
N -gon inside/outside circular domain and a point vortex

quadrupole on a plane

Leonid Kurakin1,2 and Irina Ostrovskaya1

1 Institute for Mathematics, Mechanics and Computer Sciences, Southern Federal
University, Rostov on Don, Russia
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A review of studies of resonant cases in the stability problem of a Thom-
son vortex N -gon inside and outside a circular domain is given [1, 2]. It is
noted that two of them lead to instability: a double-zero resonance in the case
N = 3 and a 1 : 2 resonance in the case N = 5. The known results of the
stability theory of the resonant cases were used [3].

In addition, a system of four point vortices on a plane is considered. Its
motion is described by the Kirchhoff equations. Three vortices have unit
intensity and one vortex has arbitrary intensity κ. We study the stability
problem for the stationary rotation of a point vortex quadrupole consisting of
three identical vortices located uniformly on a circle around a fourth vortex. It
is known that for κ > 1 the investigated regime is unstable [4] (the linearized
system has exponentially growing solutions). In the case of κ < −3 and
0 < κ < 1 the orbital stability takes place. New results are obtained for
−3 < κ < 0, [5]. It was found that for all values κ in the stability problem
there are a resonance 1 : 1 (diagonalizable case). Some other resonances up to
the fourth order inclusive are found and investigated: double zero resonance
(diagonalizable case), resonances 1:2 and 1:3, occurring at isolated values
κ. The stability of the equilibrium of the system reduced by one degree of
freedom with the involvement of the terms in the Hamiltonian up to the fourth
degree inclusive is proved for all κ ∈ (−3, 0).

The work of the first author was carried out in the frame of the Program
No. 0147-2019-0001 (State Registration No. AAAA-A18-118022090056-0).
The work of the second author was supported by Russian Foundation for
Basic Research (Projects No. 20-55-10001).
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Topological aspects of stability

Mark Levi

Penn State University, State College, USA

I will describe two observations on the motion of coupled particles in peri-
odic potentials. Coupled pendula, or the space-discretized sine-Gordon equa-
tion is an example of this problem. Linearized spectrum of the synchronous
motion turns out to have a hidden asymptotic periodicity in its dependence
on the energy; this is the gist of the first observation. Our second observation
is to point out a special property of the purely sinusoidal potentials: the lin-
earization around the synchronous solution is equivalent to the classical Lamè
equation. As a consequence, it turns out that all but one instability zones of
the linearized equation collapse to a point for the one-harmonic potentials.
This seems to be a new example where Lamé’s finite zone potential arises,
and in the simplest possible setting. This also shows that the higher harmon-
ics contribute to instability. The latter phenomenon bears some analogy to the
loss of sharpness of Arnold tongues in circle maps in the presence of higher
harmonics, and also to the loss of sharpness of instability zones in Mathieu
equation when higher harmonics are present in the potential. This is joint
work with J. Zhou and K. Kim.
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Integrability of Hamiltonian systems with gyroscopic term

Andrzej Maciejewski and Maria Przybylska

University of Zielona Góra, Zielona Góra, Poland

We consider systems with two degrees of freedom for which Hamilton
has the form

H =
1

2
(p21 + p22) + ω(p1q2 − p2q1) + V (q1, q2). (1)

The therm proportional to ω is called gyroscopic. The notion of the velocity
dependent potential is also used. Our aim is to investigate the integrability of
such systems. Some investigations concerning this problem have been done.
However, mostly they were restricted to searching additional first integrals
which are linear or quadratic in momenta, see for example [1–6].

Our main result is the following theorem.

Theorem 1. System given by Hamiltonian (1), with ω �= 0 and rational
homogeneous l potential V (q1, q2) ∈ C(q1, q2) of degree k ∈ Z, |k| > 2,
such that V (1, i) �= 0 does not admit any rational first integral which is
functionally independent with H .

We prove this theorem using methods of differential Galois theory. Pos-
sible generalisations of this result for non-homogeneous potential and more
general forms of the gyroscopic terms are discussed.
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Dynamics of an unbalanced circular foil and point vortices
in an ideal fluid

Ivan Mamaev1 and Ivan Bizyaev2
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We consider the problem of the motion of an unbalanced circular foil and
point vortices in an ideal incompressible fluid. Using Bernoulli’s theorem for
unsteady potential flow, the force due to the pressure from the fluid on the foil
is obtained for an arbitrary vortex motion. The pressure force for a circular
foil undergoing motion in the presence of one vortex was first obtained in [1].
In [2,4], the equations of motion for a foil were obtained in a fixed coordinate
system, and those for a point vortex, in a coordinate system attached to the
foil. In these variables, the Poisson structure and the additional integrals are
given by fairly cumbersome expressions. The equations of motion for a foil
and vortices in the same fixed (inertial) coordinate system were derived anew
in [3]. This made it possible to represent in a natural way the equations of
motion in Hamiltonian form with a canonical Poisson bracket and to find first
integrals due to the symmetry of the system.

A detailed analysis is made of the case of free vortex motion in which a
Hamiltonian reduction by symmetries is performed. For the resulting system,
relative equilibria corresponding to the motion of an unbalanced foil and a
vortex in a circle or in a straight line are found and their stability is investi-
gated. New examples of stationary configurations of a vortex and a foil are
given. Using a Poincare map, it is also shown that in the general case of an
unbalanced circular foil the reduced system exhibits chaotic trajectories. In
addition, a detailed qualitative analysis of the dynamics of the integrable case
of a balanced foil and a vortex is carried out.

The work was carried out within the framework of the state assignment of
the Ministry of Education and Science of Russia (FEWS-2020-0009, FZZN-
2020-0011).
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On the identical resonance and stability of Lagrangian
solutions to the bounded three-body problem

Anatoly Markeev

Ishlinsky Institute for Problems in Mechanics RAS, Moscow, Russia
Moscow Aviation Institute (National Research University), Moscow, Russia

The bounded problem of three bodies (material points) is considered. It is
assumed that the orbits of the main attracting bodies are ellipses of small ec-
centricity, and that, as the passively gravitating body moves, it may leave the
plane of the orbits of the main bodies (which amounts to the spatial problem).
An analysis is made of the stability of the motion of this body, which corre-
sponds to triangular Lagrangian libration points. A characteristic feature of
the spatial problem under study is the existence of a resonance due to equality
between the period of the Keplerian motion of the main bodies and the period
of linear oscillations of the passively gravitating body in the direction perpen-
dicular to the plane of their orbits (identical resonance). Using the methods of
classical perturbation theory, KAM theory and algorithms of computer alge-
bra, a treatment is given of the nonlinear problem of stability for most (in the
sense of Lebesgue measure) initial conditions and of the problem of formal
stability (stability in an arbitrarily high finite approximation with respect to
the coordinates and momenta of the perturbed motion).

This paper was prepared within the framework of a state assignment
(registration No. AAAA-A20-120011690138-6) at the Ishlinskii Institute of
Mechanics Problems (RAS) and at the Moscow Aviation Institute (National
Research University).
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Commuting differential and difference operators

Andrey Mironov
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We will discuss the connection between commuting differential operators
and commuting difference operators.
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On the phase change for perturbations of one-frequency
systems with separatrix crossing

Anatoly Neishtadt1,2 and Alexey Okunev1

1 Loughborough University, Loughborough, UK
2 Space Research Institute of RAS, Moscow, Russia

We study the evolution of angular variable (phase) for general (not neces-
sarily Hamiltonian) perturbations of Hamiltonian systems with one degree of
freedom near the separatrices of the unperturbed system. To this end we use
averaged system of order 2. We obtain estimates of the accuracy of averaged
system of order 2 near separatrices and use these estimates to prove a for-
mula for the phase change when solutions of the perturbed system approach
the separatrices of the unperturbed system (such formula is known when the
perturbation is Hamiltonian). As an application of this formula, we show
that two natural definitions of probability of capture into different domains
after separatrix crossing proposed by V. I. Arnold and D. V. Anosov lead to the
same formula for this probability.

The work is supported by the Leverhulme Trust (Grant No. RPG-2018-
143).
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Apsidal alignment in double averaged restricted elliptic
three-body problem: stability analysis

Anatoly Neishtadt1,2, Kaicheng Sheng1 and Vladislav Sidorenko3

1 Loughborough University, Loughborough, UK
2 Space Research Institute, Moscow, Russia

3 Keldysh Institute of Applied Mathematics, Moscow, Russia

We are dealing with the averaged model used to study the secular effects
in the motion of a body of the negligible mass in the context of a spatial
restricted elliptic three-body problem. It is supposed that the mass of one
of the primaries is significantly greater than the mass of the other (a more
massive primary body will be called a star, a less massive one will be called a
planet). The double averaged restricted elliptic three-body problem admits a
two-parameter family of equilibria (stationary solutions) corresponding to the
motion of the third body in the plane of primaries’ motion, so that the apse
line of the orbit of this body is aligned with the apse lines of the primaries’
orbits [1, 2]. The aim of our investigation is to analyze the stability of these
alignments.

We start by proving the stability of the stationary apsidal alignment in the
linear approximation. Then Arnold – Moser stability theorem [3, 4] is applied
to obtain the sufficient conditions under which the stability in a nonlinear
sense takes place. These conditions are satisfied for all parameters of the
problem, with the exception of parameters from some finite set of analytic
curves in space of parameters. The exceptional values of parameters corre-
spond to resonances 1:1 and 2:1 between frequencies of oscillations of the
apse line in the plane of primaries’ motion and across this plane and to a de-
generation of 4th order Birkhoff normal form of the problem’s Hamiltonian.

Assuming that the semi-major axis of the orbit of the body of negligible
mass is significantly greater or significantly less than the semi-major axis of
the planet’s orbit, we investigated what happens when the conditions of the
Arnold – Moser theorem are violated. It turned out that in the case of 2:1
resonance apsidal alignment is unstable. In other cases, the violation of the
conditions of Arnold – Moser theorem does not lead to instability.

Our results hopefully will be useful for studying the dynamics of exoplan-
etary systems. It is believed that apsidal alignments do occur in some of them
(e.g., [5]).

V. V. Sidorenko thanks the Russian Foundation for Basic Research for the
support of his participation in this investigation (Grant 20-01-00312A).
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The influence of the friction model on the inversion
of the tippe top

Elena Pivovarova and Alexander Kilin

Ural Mathematical Center, Udmurt State University, Izhevsk, Russia

In this work, we analyze the effect which the choice of a friction model
has on tippe top inversion in the case where the resulting action of all dissipa-
tive forces is described not only by the force applied at the contact point, but
also by the additional rolling resistance torque [1]. It turns out that depending
on the chosen friction model, the system admits different first integrals: the
Jellett integral, the Lagrange integral or the area integral.

In the classical model explaining the top inversion [2,3], the rolling resis-
tance is described only by the friction force applied at the point of contact.
As is well-known, in this case, the Jellett integral is preserved and top inver-
sion is possible regardless of the specific type of friction force satisfying the
condition of energy dissipation. The proof of top inversion is based on the
stability analysis of steady rotations depending on the system parameters and
the value of the first integral of motion. As shown in [2, 3], the existence
and stability of steady rotations is completely determined by the integral of
motion and does not depend on the specific type of friction force.

In our work we show that the possibility or impossibility of tippe top
inversion depends on the existence of specific integrals of the motion of the
system. We consider an example of the law of rolling resistance by which
the area integral is preserved in the system. We examine in detail the case
where the action of all dissipative forces reduces to the horizontal rolling
resistance torque. This model describes fast rotations of the top between two
horizontal smooth planes. For this case, we find permanent rotations of the
system and analyze their linear stability. The stability analysis suggests that
no tippe top inversion is possible under fast rotations between two planes.
Following [2, 3], one can show that, when the area integral is preserved,
top inversion is impossible for any law of rolling resistance satisfying the
condition of energy dissipation. An explicit proof of this fact can be the
subject of a separate study.

The work was carried out within the framework of the state assignment
of the Ministry of Education and Science of Russia (FEWS-2020-0009).
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3-Diffeomorphisms with dynamics “one-dimensional
surfaced attractor-repeller”

Olga Pochinka

HSE University, N. Novgorod, Russia

The dynamics of any Ω-stable diffeomorphism f of a closed 3-manifold
M3 can be represented as an attractor-repeller. If a diifeomorphism f :
M3 → M3 has a one-dimensional hyperbolic attractor and repeller then
the attractor (the repeller) is automatically expanding (contracting) as it con-
sists of the unstable (stable) manifolds of its points, that was proved by R.
Plykin [5]. R. Williams [7] shows that the dynamics on such a basic set
is conjugate to the shift on the reverse limit of a branched 1-manifold with
respect to an expanding map. A construction of 3-diffeomorphisms with
one-dimensional attractor-repeller dynamics firstly was suggested by J. Gib-
bons [3]. He construct many models on 3-sphere with Smale’s solenoid basic
sets and proves that all examples are not structurally stable. B. Jiang, Y. Ni
and S. Wang [4] proved that a 3-manifold M3 admits a diffeomorphism f
whose non-wandering set consists of Smale’s solenoid attractors and repellers
if and only if M3 is a lens space L(p, q) with p �= 0. They also shown that
such f are not structural stable.

All generalizations of Smale’s solenoid as the intersections of nested han-
dlebodies are not surface. Moreover, all known examples of diffeomorphisms
with the generalized solenoids as the attractor and the repeller are not struc-
turally stable. A natural way to get a surface one-dimensional attractor for a
3-diffeomorphism f is to take an attractor A of some 2-diffeomorphism and
multiply its trapping neithborhood by a contraction in transversal direction.
According to [1] such attractor A is called canonically embedded surface at-
tractor. One says that R is a canonically embedded surface repeller of f if it
is a surface attractor for f−1.

Infinitely many pairwise Ω-non-conjugated diffeomorphisms with such
attractors and repellers were constructed in [1]. Moreover, there a conjecture
was formulated that all such diffeomorphisms are not structurally stable. The
main result of this paper is the proof of the conjecture.

Theorem. There are no structurally stable 3-diffeomorphisms whose non-
wandering set is a disjoint union of one-dimensional hyperbolic canonically
embedded surface attractor and repeller.

Notice, that in [2], [6] structurally stable 3-diffeomorphisms with one-
dimensional attractor-repeller dynamics were constructed, but the constructed
basic sets were not canonically embedded in surfaces in that examples.

60



This work was supported by the Laboratory of Dynamical Systems and
Applications NRU HSE, by Ministry of Science and Higher Education of the
Russian Federation (ag. 075-15-2019-1931).

References

[1] M. Barinova M., V. Grines, O. Pochinka, B. Yu. Existence of an energy function
for three-dimensional chaotic “sink-source” cascades // Chaos, 2021, vol. 31, no.
6.

[2] Ch. Bonatti, N. Guelman. Axiom A diffeomorphisms derived from Anosov flows //
J. Mod. Dyn., 2010, vol. 4, no. 1, pp. 1–63.

[3] J.C. Gibbons. One-Dimensional basic sets in the three-sphere // Trans. of the
Amer. Math. Soc., 1972, vol. 164, pp. 163–178.

[4] B. Jiang, Y. Ni, S. Wang. 3-manifolds that admit knotted solenoids as attractors
// Trans. Amer. Math. Soc., 2004, vol. 356, no. 11, pp. 4371–4382.

[5] R. Plykin. The topology of basis sets for smale diffeomorphisms // Math. USSR-
Sb., 1972, vol. 13, pp. 301–312.

[6] Shi Yi. Partially hyperbolic diffeomorphisms on Heisenberg nilmanifolds and
holonomy maps // C. R. Math. Acad. Sci. Paris, 2014, vol. 352, no. 9, pp. 743–
747.

[7] R. Williams. Expanding attractors // Inst. Hautes Etudes Sci. Publ. Math., 1974,
vol. 43, pp. 169–203.

61



The Kapitza – Whitney pendulum

Ivan Polekhin

Steklov Mathematical Institute of RAS, Moscow, Russia

A generalization of the classical Kapitza pendulum is considered: an in-
verted planar mathematical pendulum with a vertically vibrating pivot point
in a time-periodic horizontal force field. The dynamics of this system is more
complex than of the classical Kapitza pendulum. However, It has been previ-
ously shown that there always exists a periodic solution along which the rod
of the pendulum never becomes horizontal, i. e., the pendulum never falls,
provided the period of vibration and the period of horizontal force are com-
mensurable. We present a numerical study of stability of these non-falling
periodic solutions.
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Non-integrability of planar elliptic restricted
three body problems

Maria Przybylska and Andrzej Maciejewski

University of Zielona Góra, Zielona Góra, Poland

We analyse the integrability of various planar elliptic restricted three body
problems: the classical problem, its photogravitational generalization and the
planar elliptic limiting Hill’s problem. In the classical restricted three body
problem we consider the dynamics of a point with a negligible mass moving
in the gravity field of two other points masses called the primaries with huge
masses m1 and m2. They move in elliptic Keplerian orbits around their
common mass centre. In the case when massless test particle moves in the
same plane as the orbits of the primaries the problem is called planar elliptical
restricted three body problem, otherwise is called spatial one. The mass
parameter is μ = m2

m1+m2
, m2 � m1, μ ∈ (0, 1/2]. We assume that m1 +

m2 = 1 and then primaries have masses: heavier m1 = 1−μ and lighter one
m2 = μ, respectively.

The planar elliptic restricted three-body problem possesses the generali-
sation which takes into account the radiation of the primaries. It is called the
photogravitational elliptic restricted three body problem.

To describe dynamics of the massless particle we pass to the frame which
rotates nonuniformly and pulsates isotropically in the plane to ensure that
the primary masses remain fixed at the positions P1 = (−μ, 0) and P2 =
(1 − μ, 0). If (q1, q2) denotes the position of the massless particle in this
frame, then its equations of motion are determined by Hamiltonian

Hr3bp =
1

2
(p21 + p22) + p1y − p2x+

er(e, ν) cos ν

2
(q21 + q22)−

− r(e, ν)

(
σ1(1− μ)

r1
+

σ2μ

r2

)

,

r1 =
√
(q1 + μ)2 + q22 , r2 =

√
(q1 − 1 + μ)2 + q22

(1)

where e ∈ (0, 1) is the eccentricity and function r(e, ν) equals

r(e, ν) =
1

1 + e cos ν
. (2)

Here ν(t) is the true anomaly and constants σi = 1 − βi, i = 1, 2 measure
strength of the radiation-pressure forces. More precisely, β = Fr/Fg, where
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Fr is the radiation-pressure force and Fg is the gravitational force of the
respective primary. Constants σi ∈ [0, 1], where σi = 1 corresponds the pre-
viously described classical case without radiation while σi = 0 corresponds
situation when radiation-pressure force balances the gravitational force. The
restricted three body is very popular and still very actively considered prob-
lem of celestial mechanics, see e.g. [2, 4, 8].

In the limiting Hill case of the restricted three body problem the massless
body is attracted by two primary bodies one of which is at extremely larger
distance from the second one and we are interested in motion of massless
body near the smaller primary mass. In order to pass to this limit we make
transformation (q1, q2, p1, p2) → (Q1, Q2, P1, P2)

q1 = Q1μ
1/3+1−μ, q2 = Q2μ

1/3, p1 = P1μ
1/3, p2 = P2μ

1/3+1−μ.

This transformation moves the smaller primary with mass μ < 1
2 placed to

the right at (1 − μ, 0) to the origin and applied rescaling in the limit μ = 0
sends the more massive primary to infinite distance. Also in this limit it is
necessary to change the radiation coefficient of the larger primary, thus we
make transformation (σ1, σ2) → (s1, s2) given by σ1 = 1 − s1μ

1/3 that
means β1 = s1μ

1/3 and σ2 = s2.
The dominant term in the expansion of Hamiltonian (1) in powers of μ1/3

gives the so-called Hill limit

HHill =
1

2
(P 2

1 + P 2
2 ) + P1Q2 − P2Q1 − s1r(e, ν)Q1+

+
1

2

[
Q2

1 (1− 3r(e, ν)) +Q2
2

]
− s2r(e, ν)

√
Q2

1 +Q2
2

,
(3)

for details see e.g. [7].
Hamiltonian equations generated by (1) or by (3) have equilibria called

the Lagrange points and we will consider dynamics in a neighbourhood of
the so-called triangular Lagrange points. The natural application of these
variational equations is the linear stability analysis of the triangular points
that subject became popular in the 1960s [3, 5, 9].

But there is also other application of these variational equations. Namely,
because these systems are time-periodic Hamiltonian with two degrees of
freedom variational equations around these equilibria are linear equations with
non-constant coefficients. Using these equations we show non-integrability
by means of the differential Galois integrability obstructions [6]. We consider
all variational equations and the so-called symplectic Kovacic’s algorithm [1].
Variational equations rewritten as the fourth order scalar equations factorize
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into two second order differential operators. Analysing differential Galois
group of the right-hand factor enables to show the non-integrability.
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On asymptotics of Painlevé transcendents

Milena Radnović

The University of Sydney, NSW, Australia
Mathematical Institute SANU, Belgrade, Serbia

Using the construction of the initial values space for Painlevé differential
equations, we analyse the asymptotics of their solutions around the singulari-
ties. The results are obtained jointly with Nalini Joshi.
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Quantum phase space localization in chaotic systems

Marko Robnik

CAMTP — Center for Applied Mathematics and Theoretical Physics,
University of Maribor, Maribor, Slovenia

Dedicated to the memory of Alexey Borisov

Quantum localization (or dynamical localization) in systems that are clas-
sically chaotic (either ergodic and fully chaotic or partially chaotic, of the
mixed-type) is one of the central phenomena in quantum chaos. The phase
space structure of the chaotic eigenstates is studied by means of Wigner func-
tions or Husimi functions. It turns out that they are ergodic (maximally
extended in the chaotic part of the phase space) if the Heisenberg time scale
of the system with the discrete energy spectrum is larger than the classical
transport time scale (for the diffusion in the momentum space), whilst if this
condition is not met the chaotic eigenstates are localized in the chaotic part
of the phase space. We can quantify the degree of localization by various
localization measures, such as the entropy localization measure, the corre-
lation localization measure, or the normalized inverse participation ratio of
the Husimi functions. They are all linearly related and thus equivalent. The
transition from localized to completely delocalized (ergodic) regime is rather
smooth. Also, the spectral statistics is affected strongly by the quantum local-
ization. For example, in fully chaotic systems the level spacings distribution is
well described by the Brody distribution, while in the case of the mixed-type
systems it is BRB (Berry–Robnik–Brody). The Brody level repulsion param-
eter β goes from 0 in case of the strongest localization (implying Poisson
distribution) to 1 in case of complete extendedness on the chaotic component
(implying the GOE distribution well approximated by the Wigner distribution
for the chaotic part of the energy spectrum). In the extreme special case of
ergodic regime with full chaos (no regular component) and no quantum local-
ization the statistics is well described by the Gaussian random matrix theories
(GOE). I shall explain the general theoretical approach and present the results
for the billiard systems as well as for the Dicke system. The latter one is a
mixed-type system with a classical analogue having a smooth potential.
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Sub-Riemannian geometry on the group of motions
of the plane

Yuri Sachkov and Andrei Ardentov

Program Systems Institute, Pereslavl-Zalessky, Russia

We will discuss the unique, up to local isometries, contact sub-Riemannian
structure on the group SE(2) of proper motions of the plane (also known as
the group of rototranslations).

The following questions will be addressed:

• geodesics,

• their local and global optimality,

• cut time, cut locus, and spheres,

• infinite geodesics,

• bicycle transform and relation of geodesics with Euler elasticae,

• group of isometries and homogeneous geodesics,

• applications to imaging and robotics.
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Steady states of the Vlasov equation
with modified potential of the Lennard – Jones type

Tatiana Salnikova

Lomonosov Moscow State University, Moscow, Russia

We consider the gravitating particles that can collide. Collisions can be
described in various ways. We can use the theory of inelastic interaction
of solids with Newton’s recovery coefficient for the relative velocity of col-
liding particles. In numerical implementation, the main difficulty of this
approach is to track and refine a huge number of time moments of particle
collisions. Another approach is to add to the gravitational potential the poten-
tial of repulsive forces, similar to the intermolecular Lennard – Jones forces.
Numerical experiments show that when the Jacobi stability condition is satis-
fied, both models lead to a qualitatively identical character of evolution with
the possible formation of stable configurations [1]. As it is known, when
pair collisions of an infinitely large number of gravitating particles are taken
into account, the probability density function evolves in accordance with the
Vlasov – Boltzmann – Poisson system of equations [2]. We suggest a research
method using the Vlasov equation with the Lennard – Jones type potential.
This allows to take into account the size of the interacting particles, and also
take into account not only paired, but also triple or more collisions of the par-
ticles. For this dynamical system the existence of a large class of nonlinearly
stable equilibrium solutions is proved by the Energy– Casimir method [2].

The main point of this study is a general method for asserting nonlin-
ear stability for infinite-dimensional Hamiltonian systems. Our strategy for
proving the existence of nonlinearly stable stationary states will be as fol-
lows. The phase flow of the equations of characteristics corresponding to
the Vlasov equation for the problem with a modified gravitational potential
preserves the phase volume. Then, for any reasonably chosen function, the
so-called Casimir functional — the integral of this function of the phase den-
sity over the phase space — will also be preserved. The Hamiltonian, which
is a functional of the phase density, does not have critical points if we take
the space of all densities of the phase space as the state space. The linear part
of the continuation in the vicinity of some stable state with the corresponding
potential does not disappear, but for the energy — Casimir functional (H +
C) the corresponding steady states are critical points [3, 4]. (Critical points
of the Hamiltonian restricted to the manifold, which is determined by the
preservation of the Casimir functional).
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The paper proves the existence of Lyapunov stable equilibrium solutions
of the Vlasov equation describing the evolution of the phase density function
of a system of mutually gravitating particles with possible collisions. Instead
of analyzing the stability of a particular equilibrium state, the functional of
the phase density function is investigated — whether this functional will reach
a minimum on a suitable set of states f . Such minimizer, if it exists, is a
critical point of the energy functional, and its minimization property leads to
the statement of dynamic stability. The key point of this paper is the proof of
the theorem on the existence of a minimizer of the energy functional on the
bounding set defined by the given constants [5].
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Reflection and refraction of Lagrangian manifolds
and Maslov complex germs corresponding to short-wave

solutions of the wave equation
with an abruptly varying velocity

Andrei Shafarevich

Moscow State University, Moscow, Russia

We describe the propagation of waves in media containing localized rapidly
changing inhomogeneities (for example, narrow underwater ridges or pycno-
clines in ocean, layers with drastically changing optical or acoustic density,
etc.). We study behavior of Lagrangian surfaces and Maslov complex germs,
corresponding to short-wave solutions; in particular, we describe refraction
and reflection of these geometrical objects on the support of the inhomogene-
ity.
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New stationary states of three point vortices
in a two-layer rotating fluid

Mikhail Sokolovskiy

Water Problems Institute of Russian Academy of Science, Moscow, Russia
Shirshov Institute of Oceanology of Russian Academy of Science, Moscow, Russia

The integrable two-dimensional problem of three vortices [1, 2] has at-
tracted the interest of researchers for over 125 years [5]. This is not associ-
ated only with the vortex problem in itself but also has numerous analogies in
the mechanics of solids, astrophysics, the dynamics of superfluid helium, and
mathematical biology [1]. A new peak of interest in this problem was stimu-
lated by the discovery of so-called three-polar structures [4], i.e., symmetric
triples of vortices (−κ, 2κ,−κ) and by later observation of their spontaneous
origin from chaos [3]. In most studies, the dynamics of vortices was ana-
lyzed in the framework of the homogeneous-fluid model. At the same time,
the geophysical problems are characterized by noticeable density stratification
and rotation [6].

Here, we suppose that the vortex motion takes place in an unbounded
rotating two-dimensional two-layer fluid with constant densities ρ1, ρ2 (ρ1 <
ρ2) in the upper and lower layer, respectively. Let one of the vortices be
situated in the upper layer and two vortices in the lower layer. The equations
of motion in the coordinate system x; y rotating along the axis perpendicular
to plane (x, y) with an angular velocity of Ω take the form [6]

ẋ1
1 = − 1

4π

2∑

α=1

κα
2

y11 − yα2
(
r1α12

)2

[

1− γr1α12K1

(
γr1α12

)]

,

ẋα
2 = − 1

4π

{

κ3−α
2

yα2 − y3−α
2

(
r
α(3−α)
22

)2

[

1 + γr
α(3−α)
22 K1

(
γr

α(3−α)
22

)]

+ κ1
1

yα2 − y11
(
rα121

)2

[

1− γrα121K1

(
γrα121

)]
}

, (1)

ẏ11 =
1

4π

2∑

α=1

κα
2

x1
1 − xα

2
(
r1α12

)2

[

1− γr1α12K1

(
γr1α12

)]

,

ẏα2 =
1

4π

{

κ3−α
2

xα
2 − x3−α

2
(
r
α(3−α)
22

)2

[

1 + γr
α(3−α)
22 K1

(
γr
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+ κ1
1

xα
2 − x1

1
(
rα121

)2

[

1− γrα121K1

(
γrα121

)]
}

. (2)

Here, κα
j is the intensity of the point vortex with the coordinates (xα

j , y
α
j ). The

subscript and the superscript correspond to the layer number and to vortex
number, respectively (in our case, α = 1 at j = 1, and α = 1, 2 at j = 2);

rαβij =
√
(xβ

j − xα
i )

2 + (yβj − yαi )
2; γ is inversely proportional to the Rossby

internal deformation radius λ =
√
g′h1h2/(h1 + h2)/2Ω, g′ the reduced

acceleration of gravity, h1 and h2 are the thickness of the upper and lower
layers, respectively. In (1)–(2) and bellow we assume h1 = h2 = 1/2; K1 is
the modified Bessel Function of the first order.

One of the main integral invariants L = κ2
2κ

1
2r

21
22 + κ1

1κ
2
2r

12
12 + κ1

1κ
1
2r

11
12 is

of fundamental importance for the motions of a vortex structure. The motions
of such a vortex structure are very diverse. At κ = κ1

1 + κ1
2 + κ2

2 �= 0, the
trajectories of all vortices are finite and, with time, completely obscure the
concentric annular regions centered at the point (xc, yc) = ((κ1

1x
1
1 + κ1

2x
1
2 +

κ2
2x

2
2)/κ, (κ

1
1y

1
1 + κ1

2y
1
2 + κ2

2y
2
2)/κ). Among these solutions, one can find

Fig. 1. The family of choreography for vortices of the upper (red line) and lower (green
and blue lines) layers for stationary solutions of the m-modal type (m = 1, 2, . . . , 6).
Circle markers indicate the initial positions of the vortices. Here, L=6; κ1

1 = 4,
κ1
2 = 2, κ2

2 = −1; and in initial time x1
1 = y1

1 = y1
2 = y2

2 = 0; x2
2= 4.0824, 3.9242,

3.7604, 3.6287, 3.5242, 3.4400 for m from 1 to 6, respectively. The x1
2 values are

calculated in terms of x2
2 and L
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a countable number of stationary periodic solutions with closed trajectories
(so-called choreographies) of m-modal type (the mode number coincides with
the number of peripheral vortex loops of the lower layer. Examples of such
trajectories are shown in Fig. 1 for the case when at the initial moment of
time all vortices are located on the x-axis.
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Cusps of caustics by reflection and Legendrian knots

Sergei Tabachnikov

Pennsylvania State University, University Park, USA

Assume that the boundary of a planar oval is an ideal mirror, and one has
a point source of light inside the oval. Consider the rays of light that have
undergone N reflection in the mirror, where N = 1, 2, . . . The envelope of
this family of rays is the N th caustic by reflection. I shall show that, for
every N , this caustic has at least four cusps. This result is a consequence of
a far reaching generalization of the 4-vertex theorem, conjectured by Arnold
and proved by Chekanov and Pushkar’ using the Legendrian knot theory [1].

Similar problems for convex surfaces were considered before: Caratheo-
dory proved that the locus of points conjugated to a given point has at least
four cusps, and Jacobi stated, in his “Lectures on dynamics", that this num-
ber is exactly four in the case of the ellipsoids (this is known as the “Last
Geometric Statement of Jacobi"). Our problem is a billiard version of these
problems of differential geometry of surfaces. Conjecturally, all caustics by
reflection in ellipses have exactly four cusps, and this property is characteris-
tic for ellipses.
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Exact solutions of the Davey – Stewartson equation
and minimal surfaces in the four-space

Iskander Taimanov
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Institute of Mathematics, Novosibirsk, Russia

We construct the Moutard type transformation for solutions of the Davey –
Stewartson equation. By this transformation and the spinor (Weierstrass)
representation of surfaces in the four-space, we construct from the minimal
surfaces in C

2 = R
4 of the form z2 = f(z1) where (z1, z2) ∈ C

2 and f is
a holomorphic function exact solutions of this equation such that they have
regular and fast decaying inital data and lose regularity in a final time.
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Dynamics of a class of simple mobile parametric oscillators

Phanindra Tallapragada
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Dedicated to the memory of Alexey Borisov

Terrestrial locomotion that is produced by creating and exploiting fric-
tional anisotropy is common amongst animals such as snakes, gastropods,
limbless lizards. This has inspired research in designing robots and mecha-
nisms with substrates that possess frictional anisotropy. This talk will describe
a model of a bristle bot,a platform that rests on a substrate supported by bris-
tles, that locomotes by generating frictional anisotropy due to the oscillatory
motion of an internal mass. Such vibrational robots have been available as
toys and theoretical curiosities and have seen some applications as the well
known kilobot and in pipe line inspection, but much remains unknown about
such type of terrestrial locomotion. The principle of vibrations induced mo-
tion has been studied in idealized mechanical systems moving on surfaces
with anisotropic friction in [1–3]. A quasi static analysis of the bristle bot
dynamics in [4] showed the friction between the bristle tips and the ground
are different in different phases of the oscillations of the internal mass. This
talk drawn from the results in [5] and other recent research will present a
toy model of a bristle bot made from a toothbrush, and discuss a theoretical
model for its dynamics and show that its dynamics can be classified into four
modes of motion: purely stick (no locomotion), slip, stick-slip and hopping.
In the stick mode, the dynamics of the system are those of a nonlinear Math-
ieu oscillator and large amplitude resonance oscillations lead to the slip mode
of motion. The mode of motion depends on the amplitude and frequency of
the periodic forcing. A phase diagram can be computed that captures this
behavior, that is reminiscent of the tongues of instability seen in a Mathieu
oscillator. The broader result that emerges paper is that it may be possible to
actively tune the frictional interaction between a robot and the substrate on
which the robot is moving purely through internal shape variables to produce
agile and controllable locomotion. Some experimental results on the motion
of such robots in pipes and restrictive environments will be also be discussed
as possible applications.
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On the isochronicity problem

Dmitry Treschev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia

Our main result is the complete set of explicit conditions necessary and
sufficient for isochronicity of a Hamiltonian system with one degree of free-
dom. The conditions are presented in terms of Taylor coefficients of the
Hamiltonian function.
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On completely noninvariant Killing tensors in Euclidean
geometry

Andrey Tsiganov

St. Petersburg State University, St.Petersburg, Russia

According to Erlangen Program the main goal of any branch of geometry
is to study the manifold configurations with respect to those features that
are not altered by the transformations of the group. Because isometry group
and the overwhelming majority of the corresponding invariants in Euclidean
geometry are well studied, we will discuss completely non-invariant objects.

Invariant classification of the Killing tensors of valency two allows us
to construct quadratic integrals of motion and to relate the corresponding
integrable Stäckel systems with conic section theory, Abel’s quadratures, sta-
tionary flows of KdV and other nonlinear equations, algebro-geometric con-
structions of curvilinear coordinates, Turiel’s deformations of the Poisson
brackets, Gaudin magnets, black holes classification, Nijenhuis – Haantjes ge-
ometry, Kohno – Drinfeld Lie algebras, Stasheff politopes, etc.

Completely nonivariant with respect to the action of the isometry group
Killing tensors did not arise in any of these theories. We want to fill this gap
by starting, as in the invariant theory, with the Darboux type calculations in
three-dimensional Euclidean space [1]. The first results in this direction will
be discussed.
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Motion of a circular disk in the presence of a point source
in an ideal fluid

Evgeny Vetchanin and Elizaveta Artemova

Ural Mathematical Center, Udmurt State University, Izhevsk, Russia

Consider the plane-parallel motion of an unbalanced circular foil in the
presence of a point source in an unbounded volume of an ideal incompressible
fluid. We assume that the fluid performs potential noncircular motion and is
at rest at infinity.

To describe the motion of the system, we introduce three coordinate sys-
tems: a fixed (inertial) system OXY , a moving system Cx′y′, rigidly at-
tached to the foil, and a coordinate system Oxy rotating synchronously with
the foil (see Fig. 1). We will assume that the origin of the moving coordinate
system C is at the geometric center of the foil and that the center of mass of
the foil lies on the positive part of the axis Cx′.

Fig. 1. A schematic diagram of an unbalanced circular foil and a point source.

In the case of fixed source of constant intensity the equation of motion
can be represented in Hamiltonian form

Ẋc =
∂H

∂Πx
, Ẏc =

∂H

∂Πy
, ϑ̇ =

∂H

∂Πϑ
,

Π̇x = − ∂H

∂Xc
, Π̇y = − ∂H

∂Yc
, Π̇ϑ = −∂H

∂ϑ
,

(1)

where the Hamiltonian H is given by the following expression:

H =
1

2

(
P,Q−1P

)
− ρq2

4π

(
ln
(
X2

c + Y 2
c

)
− ln

(
X2

c + Y 2
c −R2

))
, (2)
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P =

⎛

⎝
Πx +Ax

Πy +Ay

Πϑ

⎞

⎠ , Q =

⎛

⎝
mc + ρπR2 0 −mcd sinϑ

0 mc + ρπR2 mcd cosϑ
−mcd sinϑ mcd cosϑ Ic +mcd

2

⎞

⎠ ,

(3)

Ax =
ρqR2Xc

X2
c + Y 2

c

, Ay =
ρqR2Yc

X2
c + Y 2

c

. (4)

Equations (1) admit two first integrals: an energy integral coinciding with
the Hamiltonian (2) and the integral of the angular momentum

K = Πϑ +ΠyXc −ΠxYc = const, (5)

which is a consequence of the existence of a symmetry field

u = −Yc
∂

∂Xc
+Xc

∂

∂Yc
+

∂

∂ϑ
− Πy

∂

∂Πx
+Πx

∂

∂Πy
. (6)

Using two consecutive changes of variables

px = (Πx +Ax) cosϑ+ (Πy +Ay) sinϑ,

py = −(Πx +Ax) sinϑ+ (Πy +Ay) cosϑ,

pϑ = Πϑ, x = Xc cosϑ+ Yc sinϑ, y = −Xc sinϑ+ Yc cosϑ

(7)

and

x = r cosϕ, y = r sinϕ, px = p cosα, py = p sinα, (8)

we can obtain the following reduced system

ṙ = m−1p cos(α− ϕ)−m−1mcd sinϕΩ,

ϕ̇ =
p sin(α− ϕ)

mr
− mcd cosϕ

mr
Ω− Ω,

ṗ = −ρq2R2

2π

cos(α− ϕ)

r(r2 −R2)
, α̇ =

ρq2R2

2π

sin(α− ϕ)

r(r2 −R2)p
− Ω,

(9)

Ω =
k − rp sin(α− ϕ)−m−1mcdp sinα

Ic +mcd2 −m−1m2
cd

2
. (10)

Nonintegrability of the system consider is shown using the scattering map
[1], see. Fig. 2.

More detailed description of this investigation can be found in Ref. [2].

The work was carried out within the framework of the state assignment
of the Ministry of Education and Science of Russia (FEWS-2020-0009).

83



Fig. 2. The parameter values mc = 1, ρ = 1, d = 0.01, Ic = 1, R = 1, k = 1,
q = 1, h = 0.001, rmax = 100. As the initial momentum we have chosen the largest
value. Here b = r sin(α− ϕ) +m−1mcd sinα.
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