Simulation of the motion of a propellerless mobile robot controlled by rotation of the internal rotor
Bulletin of Udmurt University. Mathematics. Mechanics. Computer Science, 2020, vol. 30, no. 4, pp. 645-656
Abstract
pdf (210.33 Kb)
We consider a propellerless robot that moves on the surface of a fluid by rotating of the internal rotor. The robot shell has a symmetric shape of NACA 0040 airfoil. The equations of motion are written in the form of classical Kirchhoff equations with terms describing the viscous friction. The control action based on the derived model is proposed. The influences of various model parameters on the robot’s trajectory have been studied.
Keywords:
mobile robot, propellerless robot, aquatic robot, motion simulation, Kirchhoff equations
Citation:
Klekovkin A. V., Simulation of the motion of a propellerless mobile robot controlled by rotation of the internal rotor, Bulletin of Udmurt University. Mathematics. Mechanics. Computer Science, 2020, vol. 30, no. 4, pp. 645-656
Propellerless aquatic robots
Robots in Human Life: Proceedings of the 23rd International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, CLAWAR 2020, 2020, pp. 404-411
Abstract
pdf (633.84 Kb)
This paper is devoted to investigations of the motion of the propellerless aquatic robots. There are two models of aquatic robots under consideration that move due to rotation of internal rotors. Mathematical models to describe the motion of the robots are proposed. Experiments with different control actions for fabricated prototypes to verify mathematical models have been conducted.
Citation:
Klekovkin A. V., Mamaev I. S., Vetchanin E. V., Tenenev V. A., Karavaev Y. L., Propellerless aquatic robots, Robots in Human Life: Proceedings of the 23rd International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, CLAWAR 2020, 2020, pp. 404-411
Stabilization of a spherical robot rolling on an oscillating underlying surface
2020 International Conference Nonlinearity, Information and Robotics – IEEE, 2020, pp. 1-2
Abstract
pdf (1.09 Mb)
This paper is devoted to investigations of a spherical robot rolling on an oscillating underlying surface. The model of spherical robot of combined type is considered. Based on analysis of equations of motion taking into account the oscillation of the underlying surface, a control algorithm for stabilization of the spherical robot is proposed. The influences of oscillations in horizontal and vertical directions are evaluated. The design of the spherical robot and its control system for fabrication of a prototype are described.
Keywords:
spherical robot, nonholonomic model, oscillations of the underlying surface, feedback
Citation:
Karavaev Y. L., Kilin A. A., Klekovkin A. V., Pivovarova E. N., Stabilization of a spherical robot rolling on an oscillating underlying surface, 2020 International Conference Nonlinearity, Information and Robotics – IEEE, 2020, pp. 1-2
Experimental evaluation of simplified physical model for control of aquatic robot with internal rotor
2020 International Conference Nonlinearity, Information and Robotics – IEEE, 2020, pp. 1-2
Abstract
pdf (330.17 Kb)
This paper is devoted to investigations of the motion of an aquatic propeller-less robot. The robot motion implemented by rotation of internal rotor. A simple finite-dimensional mathematical model to describe the motion of the robot is proposed. Experiments with control actions providing the motion along a straight line and a circle have been conducted.
Citation:
Klekovkin A. V., Karavaev Y. L., Mamaev I. S., Vetchanin E. V., Tenenev V. A., Experimental evaluation of simplified physical model for control of aquatic robot with internal rotor, 2020 International Conference Nonlinearity, Information and Robotics – IEEE, 2020, pp. 1-2
Stabilization of the motion of a spherical robot using feedbacks
Applied Mathematical Modelling, 2019, vol. 69, pp. 583-592
Abstract
pdf (1005.01 Kb)
The paper is concerned with the problem of stabilizing a spherical robot of combined type during its motion. The focus is on the application of feedback for stabilization of the robot which is an example of an underactuated system. The robot is set in motion by an inter- nal wheeled platform with a rotor placed inside the sphere. The results of experimental investigations for a prototype of the spherical robot are presented.
Borisov A. V., Kilin A. A., Karavaev Y. L., Klekovkin A. V., Stabilization of the motion of a spherical robot using feedbacks, Applied Mathematical Modelling, 2019, vol. 69, pp. 583-592
The dynamical model of the rolling friction of spherical bodies on a plane without slipping
Russian Journal of Nonlinear Dynamics, 2017, vol. 13, no. 4, pp. 599–609
Abstract
pdf (3.54 Mb)
In this paper the model of rolling of spherical bodies on a plane without slipping is presented taking into account viscous rolling friction. Results of experiments aimed at investigating the influence of friction on the dynamics of rolling motion are presented. The proposed dynamical friction model for spherical bodies is verified and the limits of its applicability are estimated. A method for determining friction coefficients from experimental data is formulated.
Keywords:
rolling friction, dynamical model, spherical body, nonholonomic model, experimental investigation
Citation:
Karavaev Y. L., Kilin A. A., Klekovkin A. V., The dynamical model of the rolling friction of spherical bodies on a plane without slipping, Russian Journal of Nonlinear Dynamics, 2017, vol. 13, no. 4, pp. 599–609
Experimental investigations of a highly maneuverable mobile omniwheel robot
International Journal of Advanced Robotic Systems, 2017, vol. 14, no. 6, pp. 1-9
Abstract
pdf (654.85 Kb)
In this article, a dynamical model for controlling an omniwheel mobile robot is presented. The proposed model is used to
construct an algorithm for calculating control actions for trajectories characterizing the high maneuverability of the mobile
robot. A description is given for a prototype of the highly maneuverable robot with four omniwheels, for which an
algorithm for setting the coefficients of the PID controller is considered. Experiments on the motion of the robot were
conducted at different angles, and the orientation of the platform was preserved. The experimental results are analyzed
and statistically assessed.
Keywords:
omniwheel, mobile robot, dynamical model, PID controller, experimental investigations
Citation:
Kilin A. A., Bozek P., Karavaev Y. L., Klekovkin A. V., Shestakov V. A., Experimental investigations of a highly maneuverable mobile omniwheel robot, International Journal of Advanced Robotic Systems, 2017, vol. 14, no. 6, pp. 1-9
Experimental Investigations of the Controlled Motion of a Screwless Underwater Robot
Regular and Chaotic Dynamics, 2016, vol. 21, no. 7-8, pp. 918-926
Abstract
pdf (6.91 Mb)
In this paper we describe the results of experimental investigations of the motion of a screwless underwater robot controlled by rotating internal rotors. We present the results of comparison of the trajectories obtained with the results of numerical simulation using the model of an ideal fluid.
Keywords:
screwless underwater robot, experimental investigations, helical body
Citation:
Karavaev Y. L., Kilin A. A., Klekovkin A. V., Experimental Investigations of the Controlled Motion of a Screwless Underwater Robot, Regular and Chaotic Dynamics, 2016, vol. 21, no. 7-8, pp. 918-926
Influence of rolling friction on the controlled motion of a robot wheel
Bulletin of Udmurt University. Mathematics. Mechanics. Computer Science, 2015, vol. 25, no. 4, pp. 583-592
Abstract
pdf (395.52 Kb)
This paper presents an experimental investigation of the influence of rolling friction on the dynamics of a robot wheel. The robot is set in motion by changing the proper gyrostatic momentum using the controlled rotation of a rotor installed in the robot. The problem is considered under the assumption that the center of mass of the system does not coincide with its geometric center. In this paper we derive equations describing the dynamics of the system and give an example of the controlled motion of a wheel by specifying a constant angular acceleration of the rotor. A description of the design of the robot wheel is given and a method for experimentally determining the rolling friction coefficient is proposed. For the verification of the proposed mathematical model, experimental studies of the controlled motion of the robot wheel are carried out. We show that the theoretical results qualitatively agree with the experimental ones, but are quantitatively different.
Keywords:
robot-wheel, rolling friction, displacement of the center of mass
Citation:
Pivovarova E. N., Klekovkin A. V., Influence of rolling friction on the controlled motion of a robot wheel, Bulletin of Udmurt University. Mathematics. Mechanics. Computer Science, 2015, vol. 25, no. 4, pp. 583-592
A model of a screwless underwater robot
Bulletin of Udmurt University. Mathematics. Mechanics. Computer Science, 2015, vol. 25, no. 4, pp. 544-553
Abstract
pdf (308.24 Kb)
The paper is devoted to the development of a model of an underwater robot actuated by inner rotors. This design has no moving elements interacting with an environment, which minimizes a negative impact on it, and increases noiselessness of the robot motion in a liquid. Despite numerous discussions on the possibility and efficiency of motion by means of internal masses' movement, a large number of works published in recent years confirms a relevance of the research. The paper presents an overview of works aimed at studying the motion by moving internal masses. A design of a screwless underwater robot that moves by the rotation of inner rotors to conduct theoretical and experimental investigations is proposed. In the context of theoretical research a robot model is considered as a hollow ellipsoid with three rotors located inside so that the axes of their rotation are mutually orthogonal. For the proposed model of a screwless underwater robot equations of motion in the form of classical Kirchhoff equations are obtained.
Keywords:
mobile robot, screwless underwater robot, movement in ideal fluid
Citation:
Vetchanin E. V., Karavaev Y. L., Kalinkin A. A., Klekovkin A. V., Pivovarova E. N., A model of a screwless underwater robot, Bulletin of Udmurt University. Mathematics. Mechanics. Computer Science, 2015, vol. 25, no. 4, pp. 544-553
Kinematic control of a high manoeuvrable mobile spherical robot with internal omni-wheeled platform
Russian Journal of Nonlinear Dynamics, 2014, vol. 10, no. 1, pp. 113-126
Abstract
pdf (3.43 Mb)
In this article a kinematic model of the spherical robot is considered, which is set in motion by the internal platform with omni-wheels. It has been introduced a description of construction, algorithm of trajectory planning according to developed kinematic model, it has been realized experimental research for typical trajectories: moving along a straight line and moving along a circle.
Kilin A. A., Karavaev Y. L., Klekovkin A. V., Kinematic control of a high manoeuvrable mobile spherical robot with internal omni-wheeled platform, Russian Journal of Nonlinear Dynamics, 2014, vol. 10, no. 1, pp. 113-126