Weak Limits of Probability Distributions in Systems with Nonstationary Perturbations

Academician V. V. Kozlov

Received January 9, 2003

Consider a system of differential equations

\[
\dot{x} = \omega, \quad \dot{\omega} = f(t),
\]

where \(x = (x_1, x_2, \ldots, x_n, \text{mod } 2\pi)\) are angular coordinates on an \(n\)-dimensional torus, \(\omega = (\omega_1, \omega_2, \ldots, \omega_n) \in \mathbb{R}^n\), and \(f\) is a given vector function of \(t\). Assume that \(f\) is twice (Riemann) integrable with respect to time \(t\). Equations (1) describe the motion of a classical system with configuration space \(\mathbb{T}^n = \{x\}\) and kinetic energy \(T = \frac{(\omega_1, \omega_2, \ldots, \omega_n)}{2}\) under the action of an external force \(f\).

If \(f = 0\), then (1) is a completely integrable Hamiltonian system, with the coordinates \(x\) and \(\omega\) being action-angle variables. The same form is possessed by perturbations of completely integrable Hamiltonian systems in the general nondegenerate case.

Following Gibbs, we define a probability measure \(\rho(x, \omega) d^n x d^n \omega\) with a summable density \(\rho\) in the phase space \(\Gamma = \mathbb{T}^n \times \mathbb{R}^n\). The flow of system (1) transports this measure, so that the density \(\rho(x, \omega)\) becomes a function of time. Since the divergence of the right-hand side of system (1) is zero, the probability density satisfies the Liouville equation

\[
\frac{\partial \rho}{\partial t} + \left(\frac{\partial \rho}{\partial x}, \omega \right) + \left(\frac{\partial \rho}{\partial \omega}, f \right) = 0 \tag{2}
\]

with initial condition \(\rho_0 = \rho\).

Let \(\varphi : \mathbb{T}^n \to \mathbb{R}\) be a measurable bounded function. Since \(\rho_t \in L_1(\Gamma)\) for all \(t\), the integral

\[
K(t) = \int_{\mathbb{T}^n} \rho_t(x, \omega) \varphi(x) d^n x d^n \omega
\]

is a well-defined function of time. If \(\varphi\) is the characteristic function of a measurable domain \(D \subset \mathbb{T}^n\), then \(K(t)\) is the fraction of Hamiltonian systems in the Gibbs ensemble that occupy \(D\) at time \(t\).

According to the ergodic theorem, the limit

\[
\lim_{t \to \pm \infty} \frac{1}{\tau} \int_0^\tau \rho(x - \omega t, \omega) dt \tag{3}
\]

exists for almost all \(x\) and \(\omega\), coincides almost everywhere with an integrable function \(\bar{\rho}(\omega) \geq 0\), and

\[
\int_{\mathbb{R}^n} \bar{\rho} d^n x d^n \omega = (2\pi)^n \int_{\mathbb{R}^n} \bar{\rho}(\omega) d^n \omega = 1. \tag{4}
\]

Thus, the function \(\bar{\rho}\) can be treated as the density of the limit probability measure (in a weak sense) that corresponds to a statistical equilibrium of the system under consideration.

THE MAIN RESULT

Theorem 1. Under the assumptions made above,

\[
\lim_{t \to \pm \infty} K(t) = \int_{\mathbb{T}^n} \bar{\rho}(\omega) \varphi(x) d^n x d^n \omega
\]

\[
= \frac{1}{(2\pi)^n} \int_{\mathbb{T}^n} \varphi(x) d^n x. \tag{5}
\]

Corollary. Let \(\varphi\) be the characteristic function of a measurable domain \(D\). Then

\[
\lim_{t \to \pm \infty} K(t) = \frac{\operatorname{mes} D}{\operatorname{mes} \mathbb{T}^n}.
\]

Thus, as time increases indefinitely, the systems in the Gibbs ensemble become uniformly distributed on the \(n\)-dimensional configuration torus \(\mathbb{T}^n\). For \(f = 0\), this result was established in [1].

Theorem 1 is proved by the method described in [1]. The basic point lies in the analysis of the case where \(\varphi(x) = \exp(i(m, x))\), \(m \in \mathbb{Z}^n\). It is necessary to show that, for \(m \neq 0\),

\[
\int_{\mathbb{T}^n} \rho_t(x, \omega) e^{i(m, x)} d^n x d^n \omega \to 0 \tag{5}
\]

Steklov Institute of Mathematics, Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia

e-mail: kozlov@pran.ru
as \(t \to \pm \infty \). For this purpose, we first solve the Liouville equation (2):

\[
\rho_{i}(x, \omega) = \rho(x - \omega t + h(t), \omega - g(t)),
\]

where \(\rho \) is a Cauchy datum, \(g(t) = f(t), \; g(0) = 0, \)
\(h(t) = tf(t), \) and \(h(0) = 0. \) Formula (6) is verified by
direct calculations.

Thus,

\[
K(t) = \int_{\Gamma} \rho(x - \omega t + h, \omega - g) \phi(x) d^n x d^\omega
\]

\[
= \int_{\Gamma} \rho(x, \omega) \phi(x + \omega t + \lambda(t)) d^n x d^\omega,
\]

where \(\lambda(t) = g(t) \) and \(\lambda(0) = 0. \) It is easy to verify that
\(\dot{\lambda} = -h. \)

Now setting \(\phi = \exp(i m, x) \), we derive an explicit
formula for the integral in (5):

\[
e^{i(m, \lambda)} \int_{\mathbb{R}^*} \rho(x, \omega) e^{i(m, \phi(x))} d^n x d^\omega
\]

\[
= e^{i(m, \lambda)} \int_{\mathbb{R}^*} \rho_{m}(\omega) e^{i(m, \phi(x))} d^\omega,
\]

(7)

where

\[
\rho_{m}(\omega) = \int_{\mathbb{R}^*} \rho(x, \omega) e^{i(m, x)} d^\omega.
\]

Since \(\rho_{m} \) is an integrable function, we conclude that, for
\(m \neq 0 \), integral (7) approaches zero as \(t \to \pm \infty \) (according
to the theory of the Fourier transform), which was
to be proved.

Remark. In the presence of a force \(f \), an additional
bounded oscillating factor \(\exp(i m, x) \) appears in (7).

Theorem 1 can be extended in different directions.
For example, suppose that the initial density \(\rho \) belongs
to \(L_2(\Gamma) \) (hence, \(\rho \in L_2 \) for all \(t \)) and \(\phi \) is a function
from \(L_2(\Gamma) \). Then

\[
K(t) = \int_{\Gamma} \rho \phi d^n x d^\omega
\]

(8)

is a well-defined function of time. It happens that

\[
\lim_{t \to \pm \infty} K(t) = \int_{\Gamma} \bar{\rho} \phi d^n x d^\omega,
\]

(9)

where \(\bar{\rho} \) is defined by limit (3). Thus, \(\bar{\rho} \) is a weak limit
of \(\rho \) as time increases indefinitely. The state of the system
with probability density \(\bar{\rho} \) can be called a statistical
(thermal) equilibrium. It should be emphasized that
the presence of a nonstationary perturbing force \(f(t) \)
does not influence the approach of the system to ther-
al equilibrium.

Let

\[
S(t) = -\int_{\Gamma} \rho \ln \rho_d^n x d^\omega
\]

be the entropy of the system at time \(t \). It is easy to show
that \(S(t) \equiv \text{const}. \) This is a generalization of Poincaré’s
observation that the fine-grained entropy of autonomous
dynamic systems is constant (see [2]). It is possible
to introduce the entropy of a system at statistical
equilibrium:

\[
S_{\infty} = -\int_{\Gamma} \bar{\rho} \ln \bar{\rho} d^n x d^\omega.
\]

We have the simple inequality

\[
S(t) \leq S_{\infty},
\]

which corresponds to the second law of thermodynamics
for irreversible processes. The formula for the
entropy increment \(S_{\infty} - S_{\infty} \) can be derived in accordance
with phenomenological thermodynamics (a dis-
cussion can be found in [1]). However, in the general
case, inequality (10) is valid only for adiabatic pro-
cesses, without any heat inflow. For the system con-
sidered, \(T = (\omega, f) \neq 0. \)

Note that the integral in (8) is also defined when \(\rho \in
L_p(\Gamma) \) and \(\phi \in L_q(\Gamma) \), where
\(\frac{1}{p} + \frac{1}{q} = 1 \). The limit rela-
tion (9) is also true in this case. In Theorem 1, \(p = 1 \) and
\(q = \infty \) (recall that \(L_\infty \) is the class of essentially bounded
measurable functions).

SINGULAR LIMIT DISTRIBUTIONS

Consider the simple problem of oscillations of a unit-mass ball between two walls \(0 \leq z \leq a. \) Suppose
that a force \(f(t) \) acts on the ball. For example, we may
assume that a charged ball is placed in a variable elec-
tric field. At first glance, this is a system of type (1)—
an external perturbation of an integrable system. How-
ever, this is not the case, and the problem is reduced to
the analysis of parametric perturbations.

Consider a two-sheeted cover of the line segment by
the circle \(\mathbb{T} = \{ x \mod 2\pi \} \), introducing an angular vari-
iable according to the following rule: \(x = \frac{\pi z}{a} \) when \(z
\]

increases from zero to \(a, \) and \(x = 2\pi - \frac{\pi z}{a} \) when \(z
\]
designs from \(a \) to zero. The equation of motion of the
ball takes the form

\[
\dot{x} = -f(t) V_x,
\]

(11)

where \(V(x) = -\frac{\pi x}{a} \) for \(0 < x < \pi \) and \(V(x) = \frac{\pi x}{a} - \frac{2\pi^2}{a} \)
for \(\pi < x < 2\pi. \) The evolution of probabilities of the
measure of Eq. (11) is a more complicated problem.
[compared to the analysis of system (1)], and it can be solved only under some additional conditions.

For example, let \(f(t) = \text{const.} \) Then Eq. (11) can be explicitly integrated, and it is easy to show that the weak limit of the probability density of the measure is a function of the total energy \(\frac{x^2}{2} + fV(x) \). Integration with respect to velocity yields a probability density in the configuration space, which is generally not constant (see [1]).

Assume that \(f(t) \) increases monotonically as \(t \to +\infty \) and

\[
\frac{df}{dt} \leq \frac{3}{2} f^2. \tag{12}
\]

Applying the method of [3], we can show that all solutions \(x(t) \) to Eq. (11) tend to the minimum point of the potential \(V(x) \) as \(t \to +\infty \). Consequently, under these assumptions, the limit probability density of the ball’s positions on the line segment coincides with the delta function \(\delta(z - a) \).

These observations can be generalized. Suppose that \(M^n = \{x\} \) is the compact configuration space of a mechanical system with \(n \) degrees of freedom, \(T \) is the kinetic energy [a positive definite quadratic form in the momenta \(y = (y_1, y_2, \ldots, y_n) \)], \(V: M \to \mathbb{R} \) is a smooth function, and \(f(t)V \) is the potential energy. The phase space \(\Gamma \) is the cotangent bundle of \(M \), and the Hamiltonian is \(H = T + f(t)V \). Let \(\rho_\tau \) be the probability density in \(\Gamma \) transported by the flow of the Hamiltonian system, and let \(\rho_0 = \rho \) be a Cauchy datum.

Theorem 2. Suppose that the measure \(\rho d^nxdn\omega \) is absolutely continuous with respect to the Liouville measure on \(\Gamma \), the function \(V \) has only nondegenerate critical points on \(M \), the function \(t \mapsto f(t) \) increases monotonically with \(t \), and (12) is fulfilled. If \(\phi: M \to \mathbb{R} \) is the characteristic function of a measurable domain on \(M \) not containing local minimum points of \(V \), then

\[
\int_{\Gamma} \rho_\tau(x, y) \phi(x) d^nxdn\omega \to 0
\]

as \(t \to +\infty \).

CONCLUSIONS

Thus, the limit distribution of the Gibbs ensemble on the configuration space \(M \) is singular: this measure is concentrated on a finite set of points that are local minima of \(V \). Theorem 2 is deduced from the result of [3]: under the conditions specified, almost all solutions to the Hamilton equations with the Hamiltonian \(H = T + fV \) are such that \(x(t) \) tends to a local minimum of \(V \) as time increases indefinitely. Moreover, the momenta \(y(t) \) are unbounded (by the Liouville theorem on the conservation of the phase volume of Hamiltonian systems). Therefore, the frequencies of small-amplitude oscillations increase indefinitely as the system approaches a stable equilibrium.

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research (project nos. 99-01-01096 and 01-01-22004) and the INTAS (project no. 00-221).

REFERENCES