А. В. БОРИСОВ, К. В. ЕМЕЛЬЯНОВ

НЕИНТЕГРИРУЕМОСТЬ И СТОХАСТИЧНОСТЬ В ДИНАМИКЕ ТВЕРДОГО ТЕЛА

ИЖЕВСК
ИЗДАТЕЛЬСТВО УДМУРТСКОГО УНИВЕРСИТЕТА
1995
А. В. Борисов, К. В. Емельянов

Б 82 Неинтегрируемость и статистическая в динамике твердого тела. Ижевск: Издательство Удмуртского университета, 1995. 57 с

ISBN 5-7029-0412-5

В работе обсуждаются аналитические методы доказательства неинтегрируемости в системах, близких к интегрируемым, а также проводится сравнение аналитических результатов с данными численного моделирования поведения траекторий в ряде классических и современных задач динамики твердого тела. Наблюдаемое расщепление сепаратрис приводит к отсутствию дополнительных первых интегрантов и возникновению статистических слоев, внутри которых имеется локальная неустойчивость траекторий. Это позволяет сделать заключение о наличии детерминированного хаоса в динамике твердого тела. Издание предназначено для научных сотрудников, аспирантов и студентов, специализирующихся по нелинейной и стохастической динамике, а также динамике твердого тела.

There is presented in this paper analytical and numerical data on non-integrability of the equation of motion and the stochastic behavior of trajectories in a range of classical and modern problems of dynamics of rigid body. There are considered analytical methods of proof of non-integrability in the systems close to integrable and their relation with data of numerical simulation. The observed splitting of separatrices leads to absence of the additional first integrals and formation of stochastic layers within which there is a local instability of trajectories. This allows to conclude about an existence of determined chaos in dynamics of rigid body. The edition is intended for researches, graduate- and post-graduate- students specializing in nonlinear, chaotic, and rigid body dynamics.

ISBN 5-7029-0412-5
Содержание
1. Отображение Пуанкаре. Алгоритм построения сепаратрис
2. Уравнения Эйлера-Пуассона. Переменные Андуайе-Депри
3. Интегрируемые случаи и их возмущения
4. Задача Кирхгофа
5. Уравнения Пуанкаре-Ламба-Жуковского и волчок на SO(4)
6. Движение изменяемого твердого тела (Уравнения Лиувилля)
7. Обобщенная задача о движении неголономного шара Чаплыгина
8. Движение шара по сфере
9. Ограниченная постановка задачи о вращении тяжелого твердого тела вокруг неподвижной точки
10. Неинтегрируемость обобщенной задачи Г. К. Суслова
11. Движение спутника с солнечным парусом

Contents
1. Poincare’s map. The algorithm of construction of separatrixes
2. Euler-Poisson’s equations. Andoyer-Depri’s variables
3. Integrable cases and perturbations
4. Kirchhoff’s problem
5. Poincare-Lamb-Zhukovsky’s equations and the top on SO(4)
6. Motion of the changeable rigid body (Liouville’s equation)
7. The generalized problem about the motion of Chaplygin’s nonholonomic ball
8. Motion of the ball in the sphere
9. A limited formulation of the problem about rotation of the heavy rigid body around a fixed point
10. Nonintegrability of the generalized Suslov’s problem
11. Motion of the satellite with solar sail
Введение

В данной работе средства компьютерного моделирования применены для изучения классических задач динамики твердого тела. Отметим, что динамика твердого тела имеет уже более чем двухвековую историю и в ней получена масса замечательных результатов, которые составляют целую главу механики [1]. Многие задачи динамики твердого тела постоянно служат для "апробации" различных математических методов, которые затем успешно используются в других областях.

В динамике твердого тела особенно много усилий было потрачено на поиски интегрируемых случаев. Многое было сделано русскими учеными (С. В. Ковалевская, С. А. Чаплыгин, А. М. Ляпунов, Н. Е. Жуковский, В. А. Стеклов). В современный период выделяются достижения в качественном анализе и исследовании интегрируемых случаев В. В. Козлова и его школы [2].

Проблема интегрируемости и неинтегрируемости в динамике твердого тела занимает одно из центральных мест. Точно интегрируемые задачи вошли в "золотой фонд" классической механики и носят имена их первооткрывателей (вопреки Лагранжу, классной Ковалевской и т. д.). Однако, с появлением быстродействующих ЭВМ стало высказываться мнение [К. Манус [3]], что "с физической точки зрения или с точки зрения гироскопической техники они почти (или совсем) не представляют интереса", поскольку с помощью ЭВМ можно получить решение на любом интервале времени со сколь угодно большой точностью, не используя явно квадратур.

И только открытия последних десятилетий позволили усомниться в правильности таких суждений. Оказалось, что существуют системы, в фазовом пространстве которых имеются области с локальной экспоненциальной неустойчивостью. В таких областях движения, начальные условия которых мало отличаются друг от друга, расходятся на конечное расстояние в небольших объемах фазового пространства. Более того, практически любая система проявляет хаотическое поведение. Интегрируемые задачи, обладающие регулярным поведением, обычно представляют собой исключительные случаи. Мы сталкиваемся с принципиально неразрешимой повышением точности вычислений проблемой непредсказуемости поведения системы, обладающей высокой чувствительностью к заданию начальных данных.

Заметим, что в интегрируемых системах нет локальной неустойчивости, движение регулярно и траектории ложатся на торы определенной размерности.

Большинство рассматриваемых в работе систем являются гамильтоновыми (или близкими к гамильтоновым и консервативными) системами с двумя степенями свободы. Для этих систем возможна визуализация движения при помощи двумерного плоского отображения Пуанкаре. Зонам фазового пространства с локальной неустойчивостью соответствуют стихастические траектории, заполняющие полностью отдельные области отображения Пуанкаре. В то же время некоторые точки при итерациях ложатся на инвариантные
(относительно отображения) кривые — сечения неразрушающихся инвариантных (относительно потока) торов. Сосуществование регулярных и хаотических движений в фазовом пространстве типично для консервативных динамических систем. В диссипативных системах все траектории обычно стремятся из-за сокращения элемента фазового объема впоследствии диссипации к некоторому притягивающему множеству — аттрактору, который может иметь сложную фрактальную структуру (странный аттрактор).

Особенный интерес к исследованию детерминированного хаоса (стехастического поведения решений систем нелинейных обыкновенных дифференциальных уравнений без случайных внешних воздействий) появился в последние десятилетия в связи с компьютерным прогрессом. Однако первые наличие такого сложного поведения детерминированных динамических систем обнаружил еще А. Пуанкаре, который также заметил ряд сопутствующих динамических эффектов и связал этот вопрос с несуществованением у данной системы полного, в смысле теоремы Лиувилля, набора аналитических первых интегралов.

Существенно, что все методы Пуанкаре принципиально являются методами малого параметра и позволяют исследовать поведение системы лишь "ближ" интегрируемых случаев и, как правило, не дают никакой информации для систем, сильно отличных от интегрируемых. В этом случае неизбежно применение методов численного анализа: построение отображения Пуанкаре, подсчет показателей Ляпунова, анализ возмущенных сепаратрис, бифуркаций периодических решений. В этой роботе мы проанализировали отображение Пуанкаре для различных задач динамики твердого тела и проследили эволюцию фазового портрета отображения на различном удалении от интегрируемых случаев.

Еще Пуанкаре обнаружил, что расщепление сепаратрис является одним из динамических эффектов, препятствующих интегрируемости уравнений движения динамических систем и приводящих к стехастичности. В интегрируемых системах сепаратрисы, исходящие из двух различных гиперболических периодических решений, сходные или вообще не имеют общих точек. В общем случае эти сепаратрисы расщепляются и можно показать, что если сепаратрисы неустойчивых периодических решений трансверсально пересекаются, то система не имеет полного набора аналитических интегралов [4]. Ближе расщепившихся сепаратрис образуется стехастический слой, движение в котором носит характер квазислучайных колебаний (номоклинническая структура). В аналитическом плане исследование расщепления сепаратрис сводится к вычислению так называемого интеграла Пуанкаре-Мельникова, который возникает при анализе величины расщепления в первом порядке теории возмущений. В некоторых случаях его удается явно вычислить с помощью вычетов [2,4]. Более сложной с аналитической точки зрения является ситуация, когда расщепление сепаратрис имеет более высокий порядок по малому параметру или экспоненциально мало. В этом случае для анализа существует пока мало конструктивных критериев. Численные методы позволяют изучить поведение сепаратрис в этой ситуации, а
также "вдали" от интегрируемых случаев. В данной работе получены компьютерные доказательства неинтегрируемости уравнений динамики твердого тела в тех случаях, когда применены аналитические методы исследования (случай, когда расщепление сепаратрис не улавливается в первом порядке теории возмущений, встречается, например, в задаче Кирхгофа).

Численный анализ позволяет также сделать заключение о возможности обобщения различных классических интегрируемых случаев на другие (например, неголономные) классы задач, а также проверить правильность полученных условий интегрируемости и выражений для первых интегралов.

Мы надеемся, что представленные в настоящей работе иллюстрации основных теоретических результатов способны "оживить" ряд классических разделов динамики твердого тела. Все рисунки созданы при помощи специально написанного для этих целей программного комплекса. Он позволяет строить отображение Пуанкаре различных динамических систем, находить периодические решения и продолжать их по параметру, строить сепаратрисы, находить показатели Ляпунова, исследовать бифуркации периодических решений.

1. Отображение Пуанкаре. Алгоритм построения сепаратрис

Отображение Пуанкаре позволяет заменить исследование фазового потока системы, описываемой дифференциальными уравнениями, изучением точечного отображения плоскости на себя (двумерное отображение). В настоящей работе мы рассматриваем отображения двух видов:

а) отображение за период,

б) отображение первого возвращения автономной гамильтоновой системы с двумя степенями свободы редуцированной на фиксированный уровень энергии.

а) Пусть задана система уравнений:

\[
\begin{align*}
 \dot{x} &= f_1(x, y, t, t \mod 2\pi), \\
 \dot{y} &= f_2(x, y, t, t \mod 2\pi),
\end{align*}
\]

(1)

явно периодически зависящая от времени \(t\). Отображением Пуанкаре (отображением за период) называется отображение плоскости на себя, сопоставляющее каждой точке \((x, y)\) при \(t=0\) ее образ \((x, y)\), в который она переходит при действии фазового потока за время \(2\pi\) (рис 1.1)

б) Если задана автономная гамильтонова система с двумя степенями свободы:

\[
 p_i = -\frac{\partial H}{\partial q_i}, \quad q_i = \frac{\partial H}{\partial p_i}, \quad i = 1, 2.
\]

(2)
Рис. 1-1. Отображение Пуанкаре за период.

Рис. 1-2-1. Отображение Пуанкаре первого возвращения.

Рис. 1-2-2. Плоскость отображения Пуанкаре первого возвращения.
то можно свести ее к системе трех дифференциальных уравнений (напри мер, для p_1, q_1, q_2), зафиксировав уровень интеграла энергии. Обычно некоторые траектории системы обладают свойством возвратимости и несколько раз "протыкают" одну и ту же плоскость (например, $q_i = 0$). Образ (p_1, q_1) точки плоскости (p_n, q_n) при следующем пересечении плоскости траекторией в одном и том же направлении (например, $q_1 > 0$) и задает отображение Пуанкаре первого возвращения (рис 1-2.1, 1-2.2).

Определенное таким образом отображение будет обладать всеми свойствами потока (2): будет сохраняться мера, есть однозначное соответствие между траекториями на плоскости и в фазовом пространстве и т. д. Кроме того, выбор плоскости сечения не играет принципиальной роли. Последовательные итерации отображения Пуанкаре, приведенные к одной точке образуют траекторию (дискретную). Траекторию, представляющую собой одну или n точек будем называть периодическим решением периода n, т.к. как в фазовом пространстве системы (2) в этом случае имеется периодическое решение. Траектории отображения Пуанкаре лежат на некоторую инвариантную кривую, если у системы (2) имеется квазипериодическое решение - инвариантный тор. Кривая в сечении Пуанкаре в этом случае есть сечение этого тора.

Хаотическое расположение точек отображения на плоскости Пуанкаре свидетельствует о локальной неустойчивости поведения траекторий системы (2). Если у этой системы имеется гиперболическое (нестойчивое) решение, то у отображения имеется гиперболическая неподвижная точка. Из нее исходят две пары сепаратрис (асимптотических поверхностей): входящих и выходящих.

Алгоритм численного построения этих сепаратрис был предложен Дэнби в [6]. Вблизи особой точки система линеаризуется и находятся собственные числа и собственные направления (вещественные в силу гиперболичности). Затем вблизи особой точки выбирается некоторое количество точек вдоль собственного направления. При последовательных итерациях этих точек получается искомые сепаратрисы. Для получения входящих сепаратрис необходимо изменить направление времени - интегрировать в обратном времени. Для более точного построения сепаратрис пользуются не линейным приближением, а нормальной формой некоторого порядка.

2. Уравнения Эйлера-Пуассона. Переменные Альдуайе-Депри

Известно, что уравнения, описывающие движение тяжелого твердого тела вокруг неподвижной точки в однородном поле тяжести имеют вид [1]:

$$\begin{cases}
\dot{M} = M \times AM - \mu(r \times \gamma), \\
\dot{\gamma} = \gamma \times AM, \\
M, \gamma \in R^4.
\end{cases}$$

(3)
Здесь \(A = \begin{pmatrix} a_1 & 0 & 0 \\ 0 & a_2 & 0 \\ 0 & 0 & a_3 \end{pmatrix} = I^{-1} \) - матрица, обратная тензору инерции \(I \), который предполагается диагональным, \(\mathbf{M}, \mathbf{y} \) - соответственно векторы кинетического момента и единичного орта вертикали "в тело" (в системе координат, жестко связанной с телом), \(r = (x, y, z) \) - радиус-вектор центра масс в этой же системе координат; \(\mu \) - вес тела.

Уравнения (3) являются гамильтоновыми (на алгебре Ли) и могут быть представлены как уравнения Пуанкаре-Чатаева [7] на алгебре Ли \(\mathfrak{e}(3) \), являющейся полупрямой суммой алгебры вращений \(\text{SO}(3) \) и алгебры трансляций \(\text{R}(3) \). Скобка Пуассона при записи этих уравнений является вырожденной и редуцируется операцией коммутирования на алгебре \(\mathfrak{e}(3) \) [7].

\[
\{M_i, M_j\} = \varepsilon_{ij} M_k, \quad \{\gamma_k, \gamma_l\} = 0, \quad \{M_i, \gamma_j\} = \varepsilon_{ij} \gamma_k.
\]

При редукции на функции Казимира \((\mathbf{M}, \mathbf{y}) = C_1, (\gamma, \gamma) = C_2 \), являющимися соответственно интегралами площадей и геометрическим интегралом (см. п. 3), скобка Пуассона становится невырожденной и уравнения движения можно представить в каноническом виде.

В качестве таких канонических координат, наиболее удобных для качественного анализа, в динамике твердого тела используются канонические переменные Андуайе-Депри \((L, G, H; t, g, h) \) [1] (Рис. 2-1).

Для описания механического смысла этих переменных сначала обозначим через \(\text{OXYZ} \) неподвижный треугольник с начальной в точке подвеса, \(\text{Oxyz} \) - жестко связанную с телом главную систему координат; \(\Sigma \) - плоскость, проходящая через точку закрепления и перпендикулярную вектору кинетического момента тела \(\mathbf{M} \) (рис. 2). В принятых обозначениях:

- \(L \) - проекция кинетического момента на подвижную ось \(Oz \),
- \(G \) - величина кинетического момента,
- \(H \) - его проекция на неподвижную ось \(OZ \),
- \(t \) - угол между осью \(Ox \) и линией пересечения \(\Sigma \) с \(Oxy \),
- \(g \) - угол между линиями пересечения \(\Sigma \) с плоскостями \(Oxy \) и \(OXY \),
- \(h \) - угол между осью \(Ox \) и линией пересечения \(\Sigma \) с плоскостью \(OXY \).
Ячеко показать [1], что в этих переменных уравнения движения имеют канонический вид:

\[\begin{align*}
\dot{\ell} &= \frac{\partial H}{\partial L}, \\
\dot{L} &= -\frac{\partial H}{\partial \ell}, \\
\dot{g} &= \frac{\partial H}{\partial G}, \\
\dot{G} &= -\frac{\partial H}{\partial g}, \\
\dot{h} &= \frac{\partial H}{\partial H}, \\
\dot{H} &= -\frac{\partial H}{\partial h},
\end{align*} \]
(5)

где гамильтониан

\[H = \frac{1}{2} (AM, M) - \mu (r, \gamma) = H(L, G, H, \ell, g) \]
(6)

является полной энергией твердого тела и не зависит от переменной \(h \), в силу чего \(H = (M, \gamma) = \text{const} \) — интеграл площадей — может рассматриваться как параметр.

Переход от переменных \(M, \gamma \) к переменным Андуай-Депри дается формулами:

\[\begin{align*}
M_x &= \sqrt{G^2 - L^2 \sin \ell}, \\
M_z &= \sqrt{G^2 - L^2 \cos \ell}, \\
M_1 &= L,
\end{align*} \]
(7)
\[
\begin{align*}
\gamma_1 &= \frac{H}{G} \sqrt{1 - \left(\frac{L}{G}\right)^2 \sin^2 \epsilon + \frac{L}{G} \sqrt{1 - \left(\frac{H}{G}\right)^2 \sin^\epsilon \cos g + \sqrt{1 - \left(\frac{H}{G}\right)^2 \cos^\epsilon \sin g}}, \\
\gamma_2 &= \frac{H}{G} \sqrt{1 - \left(\frac{L}{G}\right)^2 \cos^2 \epsilon + \frac{L}{G} \sqrt{1 - \left(\frac{H}{G}\right)^2 \cos \epsilon \cos g - \sqrt{1 - \left(\frac{H}{G}\right)^2 \sin^\epsilon \sin g}}, \\
\gamma_3 &= \frac{LH}{G^2} - \sqrt{1 - \left(\frac{L}{G}\right)^2 \sqrt{1 - \left(\frac{H}{G}\right)^2 \cos g}}.
\end{align*}
\]

Для обратного пересчета получим:
\[
\begin{align*}
L &= M_3, \quad G^2 = M_1^2 + M_2^2 + M_3^2, \\
\sin \epsilon &= \frac{M_1}{\sqrt{M_1^2 + M_2^2}}, \quad \cos \epsilon = \frac{M_2}{\sqrt{M_1^2 + M_2^2}}.
\end{align*}
\]

Можно записать уравнения движения (3) в гамильтоновой форме непосредственно на алгебре \(E(3)\)
\[
\begin{align*}
\mathbf{M} = \mathbf{M} \times \frac{\partial \mathbf{H}}{\partial \mathbf{M}} + \gamma \times \frac{\partial \mathbf{H}}{\partial \gamma}, \\
\gamma = \gamma \times \frac{\partial \mathbf{H}}{\partial \gamma}.
\end{align*}
\]

где функция Гамильтона \(\mathbf{H}\) определяется формулой (6). В форме (10) можно также записать уравнения Кирхгофа односвязного твердого тела, движущегося в безграничном объеме безвихревой несжимаемой жидкости [см. п. 5].

В настоящей работе численное интегрирование дифференциальных уравнений движения осуществляется в переменных \(\mathbf{M}, \gamma\), а вывод результатов производится в переменных Андуэй-Депри. При пересчете используются формулы (8, 9).

3. Интегрируемые случаи и их возмущения

Уравнения Эйлер-Пуссона (3) могут быть пронинтегрированы в квадратурах лишь в следующих частных случаях.

1. Случай Эйлера-Пуансо: \(a_1, a_2, a_3\) - произвольны, \(r=0\) (или \(\mu=0\)) (рис. 3.1-1)

2. Случай Лагранжа: \(a_1 = a_2, x = y = 0\)

3. Случай Косыговой: \(a_1 = a_2 = -\frac{1}{2} a_3, z = 0\) (рис. 3.3-1)

4. Случай Горячева-Чаплыгина: \(a_1 = a_2 = -\frac{1}{4} a_3, z = 0\) (рис. 3.4-1) В этом случае необходимо также, чтобы константа площади была равна нулю \(H=(M, y)=0\).

5. Частный случай интегрируемости Гесса-Аппельсера: \(y = 0, x \sqrt{a_1 - a_2} + z \sqrt{a_1 - a_3} \pm \sqrt{a_1 - a_2} = 0\) (рис. 3.1-1). При этих условиях существует частный интеграл Гесса:
\[
r M_1 \pm z M_2 = 0.
\]
Рис. 3-1-1. Интегрируемый случай Эйлера-Пуансо в динамике твердого тела (условия Эйлера-Пуассона): $x=1, y=1, z=0, I diag(2, 3, 1), E=50, H=5, \mu=0$.

Фазовый портрет отображения Пуанкаре для случая Эйлера-Пуансо приведен на рис. 3-1-1. Предполагается, что тело полностью динамически несимметрично: $a_1 \neq a_2 \neq a_3 \neq a_4$.

Рис. 3-1-2. Возмущение интегрируемого случая Эйлера-Пуансо. $x=1, y=1, z=0, I diag(2, 3, 1), E=50, H=5, \mu=0.5$.
В качестве секущей плоскости отображения Пуанкаре выбрана плоскость $g = \frac{\pi}{2} \mod 2\pi, \ g > 0$ с координатами $\ell, \ \frac{L}{G}$ (Мы выбрали $\frac{L}{G}$ вместо L из соображений удобства фазовое пространство отображения Пуанкаре в этом случае будет компактно, так как $|L| < |G|$) Из рисунка видно, что сепаратрисы, соответствующие двум гиперболическим решениям $\ell = 0, \ \ell = \pi$ невозмущенной ($\mu = 0$) задачи двоены. Они образованы асимптотическими движениями к перманентным вращениям вокруг средней оси эллипсоида инерции.

Рис. 3.1.3 Возмущение инвертированного случая Эйлера Пуанкаре. $x=1, \ y=1, \ z=0, \ L=\text{diag}(2, 3, 1), \ E=50, \ H=5, \ \mu=1$.
Рис. 3.14. Возмущение интегрируемого случая Эйлера-Пуансо. \(x=1, y=1, z=0, I=\text{diag}(2, 3, 1), E=50, \mu=5, \mu=2. \)

Рис. 3.15. Сепарадорны случай, изображенного на рисунке 3.1-5. \(x=1, y=1, z=0, I=\text{diag}(2, 3, 1), E=50, \mu=5, \mu=2. \)

Эволюция фазовых портретов при возрастающих \(\mu \) приведена на рис. 3.1-7 – 3.1-5.
Впервые подобного рода картинки были получены в [8]. Можно вири, что вблизи сето-
ратрис образуется стохастический слой, толщина которого растет с увеличением μ. Одновременно происходят перестройки сохранившихся торов Лиувилля. Наличие этих зон стохастичности связано с несуществованием дополнительного аналитического интеграла (5), который находился бы в инволюции с интегралом энергии. Строго это было доказано В. В. Козловым в [6] методом Пуанкаре, основанном на анализе векового множества. Этот результат требует аналитической зависимости дополнительного интеграла по малому параметру μ. Более сильный результат, справедливый уже при фиксированных, но малых значениях μ был получен С. Л. Зиглинным в [9] при помощи метода расщепления сепаратрис.

Рис. 3-2. Возвведение интегрируемого случая Лагранжа в динамике твердого тела (уравнения Эйлера-Пуассона). Фазовый портрет невозмущенной задачи представляет собой прямые, параллельные оси абсцисс: $x=0, y=3, z=10, l=\text{diag}(2, 2, 3), F=50, H=5, \mu=1$.

На рис. 3-1-1 – 3-1-5 показано также взаимное расположение сепаратрис при различных значениях μ. Видно, как в общем случае сепаратрисы трансверсально пересекаются, что приводит к неинтегрируемости возмущенной задачи.
Рис. 3.3.1. Интегрируемый случай Ковалевской в динамике твердого тела (уравнения Эйлера-Пуассона).
\[I = \text{diag}(1, 1, 1/2), x = 7, y = 0, z = 0, E = 50, H = 5, \mu = 1. \]

Рис. 3.3.2. Возмущение случая Ковалевской в динамике твердого тела (уравнения Эйлера-Пуассона).
\[I = \text{diag}(1, 1, 1/2), x = 7, y = 0, z = 6, E = 50, H = 5, \mu = 1. \]
Рис. 3.3.3 Сепаратрис случай, изображенного на рис. 3.3.2. Увеличено область в центре вблизи гиперболической периодической точки. $l=\text{diag}(1, 1, 1/2), x=7, y=0, z=6, E=50, H=5, \mu=1$.

Рис. 3.4.1 Интегрируемый случай Горчев-Чаплыгина в динамике твердого тела (уравнения Эйнштейна-Пуассона $x=10, y=0, z=10, l=\text{diag}(4, 4, 4), \mu=4, E=50, H=0$.}
На рис. 3-2 показано поведение отображения Пуанкаре при возмущении интегрируемого случая Лагранжа при $x=0$. Отметим, что в невозмущенной задаче при $x=0$ нет
гиперболических периодических решений, а существуют только неустойчивые положения равновесия. Аналитическое исследование поведения сепаратрис гиперболических неподвижных точек и доказательство неинтегрируемости (3), основанное на теоремах Деваня и Тураева-Шильникова проведено в работах [10, 11].

Рис. 3-5-1. Частный случай интегрируемости Гесса-Аппельрота уравнений Эйлера-Пуассона. Частный интеграл Гесса представляет собой пару нерасширяющихся сепаратрис x=3, y=0, z=4, I=diag(1, 0.625, 0.375), μ=2, E=50, N=5.

Аналитическое исследование возмущенных случаев Ковалевской и Горячева-Чаплыгина еще не выполнено. Некоторые численные результаты приведены на рис. 3-3-1 - 3-3-3 и 3-4-1 - 3-4-3. В работе [12] Н. И. Мерцалов высказал утверждение, что при условиях Горячева-Чаплыгина система интегрируема при любой постоянной площади N>0. Рис. 3-4-2 показывает, что это утверждение ошибочно уже при малых значениях N.
Рис. 3.5-2. Увеличена область из рис. 3.5-1, иллюстрирующая потерю гладкости инвариантных торов при наложении возмущения.

Рис. 3.5-3. Сепаратрисы случая Гесса-Аппельрота уравнений Эйлера-Пуассона. Частный интеграл Гесса представляет собой пару неосциллирующих сепаратрис: $x=3$, $y=0$, $z=4$, $l=\text{diag}(0, 0.625, 0.375)$, $\mu=2$, $\ell=50$, $H=5$.

4. Задача Кирхгофа

В так называемых переменных Клебша M и γ [14] уравнения Кирхгофа, описывающие движение по инерции одноосного твердого тела в безграничном объеме безвихревой идеальной несжимаемой жидкости имеют вид (10), где переменные M и γ имеют смысл соответственно импульсного момента и импульсивной силы при движении тела в жидкости [15].

Гамильтониан в задаче Кирхгофа имеет вид:

$$H = \frac{1}{2} (\mathbf{AM}, \mathbf{M}) + (\mathbf{BM}, \gamma) + \frac{1}{2} (\mathbf{Cy}, \gamma),$$

(12)

где без ограничения общности оператор A можно считать диагональным, а операторы B и C - симметрическими. В дальнейшем мы будем предполагать, что операторы B и C также являются диагональными. Физический смысл операторов A, B и C объясняется концепцией "присоединенных" масс и моментов тела, движущегося в жидкости [15].

Аналитическое изучение условий интегрируемости задачи Кирхгофа методом Пуанкаре было произведено в работе [16], а методом расщепления сепаратрис в [17]. При этом предполагалось, что $a_i \neq a_j \neq a_k$ и малый параметр ϵ исходя путем замены γ на μ. При этом $\mu=0$ соответствует интегрируемой случай Эйлера-Пуансо.

Необходимые условия существования дополнительного аналитического интегра могут быть записаны в виде условий Козлов-Онищенко [17, 45]:

$$\frac{c_1 - c_2}{a_1} + \frac{c_2 - c_3}{a_2} + \frac{c_3 - c_1}{a_3} = 0, \quad B = 0,$$

(13)

$$\frac{b_1 - b_2}{a_1} + \frac{b_2 - b_3}{a_2} + \frac{b_3 - b_1}{a_3} = 0, \quad B \neq 0.$$

(14)
Рис. 4.1.1. Интегрируемый случай Клебша в задаче Кирхгофа $A=\text{diag}(1, 1/2, 1/3), C=\text{diag}(1, 2, 3), B=0$, $\mu=1$.

Рис. 4.1.2. Возмущение интегрируемого случая Клебша в задаче Кирхгофа $A=\text{diag}(1, 1/2, 1/3), C=\text{diag}(1, 2, 3), B=\text{diag}(0.1, 0.0), \mu=1$.
В первом случае приведенные условия интегрируемости являются также достаточными и определяют интегрируемый случай Клебша [7]. Во втором случае, как показывает численный эксперимент, приведенный на рис. 4-2, полученные условия недостаточны.
В работе [16] показано, что достаточными условиями существования однозначного дополнительного первого интеграла (в комплексном смысле) являются условия Стеклова:

$$b_j = \mu \frac{a_j}{a_j} + v, \quad c_j = \mu^2 (a_j - a_j)^2 + v', \quad \mu, v, v' \in R. \quad (15)$$

Только при этих условиях существуют также алгебраические интегралы задачи Кирхгофа [15] (рис. 4.3-1).

Рис. 4.3-1. Интегрируемый случай Стеклова в задаче Кирхгофа. $A=\text{diag}(1, 2, 3), B=\text{diag}(6, 3, 2), C=\text{diag}(1, 8, 3), E=50, H=5, \mu=0.3.$
Поведение сепаратрис возмущенной задачи Кирхгофа приведено на рис. 4.1-1 – 4.1-3, 4.2.

а) при выполнении условий (13), (14) (рис. 4.1-1, 4.2),
б) при невыполнении условий (13), (14) (рис. 4.1-2, 4.1-3).

При выполнении условий (13), (14) расщепление сепаратрис не улавливается в первом порядке теории возмущений [23].

С точки зрения доказательства неинтегрируемости случай $a_1 = a_2$ является более сложным, чем случай общего положения. Методом расщепления сепаратрис такое доказательство было проведено в [19] (при $V=0$). Более сильные с точки зрения выделения интегрируемых случаев результаты были получены методом Гюссона в работе [21], в которой были доказаны две теоремы.

Теорема 1 [21].

Дополнительный мероморфный в окрестности точки $M = y = 0$ общий первый интеграл системы уравнений Кирхгофа при $a_1 = a_2$ за исключением интегрируемого случая Клебша: $\frac{c_2 - c_3}{a_1} + \frac{c_3 - c_4}{a_2} + \frac{c_4 - c_2}{a_3} = 0$, $b_1 = b_2 = b_3$ и Кирхгофа: $a_1 = a_2$, $b_1 = b_2$, $c_1 = c_2$, может существовать лишь при одновременном выполнении условий:
$a_1 = a_2 = a_3,$
$3(b_1 - b_2)(b_2 - b_1)(b_1 - b_3) - a_1[(b_1 - b_2)c_1 + (b_2 - b_3)c_2 + (b_3 - b_1)c_2] = 0. \tag{16}$

Рис. 4.4. Недостаточность условий теоремы 1 для интегрируемости уравнений задачи Кирхгофа: $A = \text{diag}(1, 1, 1), B = \text{diag}(1, 2, 4), C = \text{diag}(0, 4, 6), E = 50, H = 5, \mu = 1.$

Теорема 2 [21]

Дополнительный мероморфный в окрестности точки $M = y = 0$ частный (при $H = \theta$) первый интеграл системы уравнений Кирхгофа при $a_1 = a_2$ за исключением случаев Кирхгофа, Клебша и частного случая интегрируемости Чаплыгина:

$b_1 = b_2 = b_3, a_1 = a_2 = \frac{1}{2} a_3, c_1 + c_2 - 2c_3 = 0$

может существовать лишь при $a_1 = a_2 = a_3 = a$, либо при $a_1 = a_2 = \frac{2}{3} a_3.$
Рис. 4.5.1 Недостаточность условий теоремы 2 для интегрируемости уравнений Кирхгофа.
A=diag, 1, 2, B=diag, 4, 5, C=diag, 3, 4, 1, E=5C, H=0, μ=1.

Рис. 4.5.2 Недостаточность условий теоремы 2 для интегрируемости уравнений Кирхгофа.
A=diag, 1, 5, B=diag, 4, 2, C=diag, 2, 3, E=5C, H=0, μ=1.
Из рис. 4-4, 4-5-1 – 4-5-3 можно заключить, что условия теорем 1, 2 в общем случае не являются достаточными для интегрируемости (исключая случай Ляпунова, удовлетворяющий этим условиям). Однако, при некоторых дополнительных ограничениях возможны новые случаи интегрируемости, в которых интеграл будет иметь более высокую степень, чем квадратичный. На это указывают эксперименты с шаровой матрицей A (рис. 4-8-1 – 4-8-2).
Рис. 4.6-1. Возмущение случай интегрируемости Кирхгофа. (Фазовый портрет интегрируемого случая представляет собой прямые, параллельные оси абсцисс.) $A=\text{diag}(1, 1.01, 2)$, $B=\text{diag}(2, 2, 3)$, $C=\text{diag}(3, 3, 4)$, $E=50$, $H=5$.

До настоящего времени в задаче Кирхгофа получены четыре случая интегрируемости, частично обозначенные ранее: Кирхгофа, Клебша, Стеклова (и взаимный ему случай Ляпунова) и частный случай интегрируемости Чаплыгина. В первых трех случаях дополнительный интеграл имеет вторую степень по M, γ, а в случае Чаплыгина — четвертую.

Рис. 4.6-2. Возмущение случай интегрируемости Кирхгофа. $A=\text{diag}(1, 1.02, 2)$, $B=\text{diag}(2, 2, 3)$, $C=\text{diag}(3, 3, 4)$, $E=50$, $H=5$.
Рис. 4.6.3. Сепаратрисы случая, изображенного на рис. 4.6.2. Увеличена область в центре вблизи нулевой бифуркационной точки периодической точки.

Рис. 4.7.1. Частный случай интегрируемости Дэллинга в задаче Кукса: $A=0.5(1.2^2.3^2.4^2.5^2.6^2.7^2.8^2.9^2.10^2)$. 1. $C=\text{diag}(1, 3, 2, -5, 5, 50, 1-1)$. 2. $C=\text{diag}(1, 3, 2, -5, 5, 50, 1-1)$. 3. $C=\text{diag}(1, 3, 2, -5, 5, 50, 1-1)$. 4. $C=\text{diag}(1, 3, 2, -5, 5, 50, 1-1)$. 5. $C=\text{diag}(1, 3, 2, -5, 5, 50, 1-1)$. 6. $C=\text{diag}(1, 3, 2, -5, 5, 50, 1-1)$. 7. $C=\text{diag}(1, 3, 2, -5, 5, 50, 1-1)$. 8. $C=\text{diag}(1, 3, 2, -5, 5, 50, 1-1)$. 9. $C=\text{diag}(1, 3, 2, -5, 5, 50, 1-1)$. 10. $C=\text{diag}(1, 3, 2, -5, 5, 50, 1-1)$.
Рис. 4.7.2 Возмущение константы площадей частного случая интегрируемости Чаплыгина в задаче Кирхгофа. \(A = \text{diag}(1/2, 1/2, 1) \), \(B = \text{diag}(1, 1, 1) \), \(C = \text{diag}(1, 3, 2) \), \(\mu = 5 \), \(E = 50 \), \(H = 0.1 \)

Рис. 4.7.3 Возмущение константы площадей частного случая интегрируемости Чаплыгина в задаче Кирхгофа. \(A = \text{diag}(1/2, 1/2, 1) \), \(B = \text{diag}(1, 1, 1) \), \(C = \text{diag}(1, 3, 2) \), \(\mu = 5 \), \(E = 50 \), \(H = 0.5 \)

На рис. 4.6.1 – 4.6.3, 4.7.1 – 4.7.3 показано поведение системы вблизи случаев интегрируемости Кирхгофа и Чаплыгина.
В случае, когда матрицы B и C не являются диагональными, вопрос об алгебраической интегрируемости системы Кирхгофа рассматривался Рожером Лиувиллем в [21]. В этой работе он указывает условия существования дополнительного первого интеграла в случае, когда $b_{ij} \neq 0, \ i \neq j$, однако самого интеграла не выписывает, ссылаясь на его слишком сложный вид. Проведённые авторами численные эксперименты указывают на хаотическое поведение системы при условиях Р. Лиувилля и тем самым на ошибочность его результатов.

Необходимо сказать, что все утверждения этого раздела могут быть перенесены на задачу о движении заряженного твердого тела вокруг неподвижной точки в однородном магнитном поле [24] под действием сил Лоренца, в силу существования между обеими задачами математической аналогии [16].

Рис. 4-8-1. Задача Кирхгофа при выполнении условий теоремы 2. $A=\text{diag}(1, 1, 1), B=\text{diag}(1, 2, 3), C=\text{diag}(1, 4), \mu=1, E=50, H=0.$
5. Уравнения Пуанкаре-Ламба-Жуковского и волчок на SO(4)

Под этими уравнениями понимается система, описывающая движение вокруг неподвижной точки твердого тела, имеющего эллипсоидальные полости, полностью заполненные однородной вихревой несжимаемой жидкостью. В этом случае к уравнениям Эйпера для кинетического момента добавляются уравнения Гельмгольца для вихря [15]. В общем виде уравнения движения такой системы могут быть представлены в виде:

\[
\begin{align*}
M &= M \times \frac{\partial H}{\partial M^*} \\
\gamma &= \gamma \times \frac{\partial H}{\partial \gamma}
\end{align*}
\]

{17}

С квадратичным гамильтонианом (12). В дальнейшем мы будем предполагать, что все матрицы А, В и С являются диагональными. В виде уравнений (17) с квадратичным гамильтонианом могут быть представлены уравнения геодезических на группе so(4). Абстрактно такая задача представляет собой задачу о движении четырехмерного волчка и решалась еще в прошлом веке Фрамом [25].

Эти уравнения являются уравнениями Пуанкаре на алгебре SO(4), которая в естественном базисе может быть представлена как прямая сумма двух экземпляров алгебр
SO(3): SO(4)→SO(3)⊗SO(3). Первое слагаемое в этой сумме соответствует эволюции кинетического момента, второе — эволюции вектора вибра.

Для интегрируемости уравнений (17), которые кроме гамильтонiana всегда обладают интегралами $F_1 = (M,M), F_2 = (y,y)$ и естественной инвариантной мерой, не хватает еще одного дополнительного интеграла. Было найдено несколько общих и частных случаев интегрируемости системы (17): Шоттки [28], Стеклов [26], Монаков [27], Адлер-ван-Мербеке [28], Богоявленский [25]. Существовала гипотеза, принадлежавшая первому из авторов, что в данной задаче существует еще целая серия интегрируемых случаев, которая еще не была исследована. К этому предположению приводит тот факт, что при введении малого параметра в систему путем замены y на μy и стремлении $\mu \to 0$ уравнения (17) переходят в систему

\[
\begin{align*}
\dot{M} &= M \times AM, \\
\dot{y} &= y \times BM,
\end{align*}
\]

для которой может быть явно указано счетное семейство интегрируемых случаев, если матрицы A. В удовлетворяют условиям:

\[
\begin{align*}
\Delta_1 b_1^3 + \Delta_2 b_2^3 + \Delta_3 b_3^3 + k^2 \Delta_1 \Delta_2 \Delta_3 &= 0, \\
\Delta_1 &= a_1 - a_3, \Delta_2 = a_2 - a_3, \Delta_3 = a_1 - a_2,
\end{align*}
\]

где k является нечетным целым числом. Исследования в этом направлении были проведены А. В. Борисовым и А. В. Цыгиным. Для первоначальной системы (17) методом Ковалевской могут быть получены условия мероморфности общего решения. В случае, когда все элементы матриц A и C являются различными к соотношениям (19) необходимо добавить аналогичные соотношения для матрицы C.

\[
\begin{align*}
\delta_1 b_1^3 + \delta_2 b_2^3 + \delta_3 b_3^3 + m^2 \delta_1 \delta_2 \delta_3 &= 0, \\
\delta_1 &= c_1 - c_3, \delta_2 = c_2 - c_3, \delta_3 = c_1 - c_2,
\end{align*}
\]

где m является нечетным числом. Эти формальные условия интегрируемости не являются, однако, достаточными. В случаях, когда существует дополнительный первый интеграл $k=3$ и $m=1$ [29, 30]. Все известные квадратичные случаи в уравнениях (17) могут быть редуцированы к случаям Клебца и Стеклова в задаче Кирхгофа путем процедуры ретракции [31] и даже построением прямого изоморфизма [32].

Случай интегрируемости, при котором $k=3$ и $m=1$ был найден недавно Адлером и Ван-Мёрбеке [28]. В этом случае интеграл имеет четвертую степень.

Как показали численные исследования, проведенные недавно Д. А. и А. А. Багрецами, интегрируемые случаи системы (18), полученные при условиях (19), (20), не переходят непосредственно на систему (17). Непосредственно не обобщаются на эту систему даже более простые случаи, при которых $A=C$ или $A=E$.
Уравнения (17) являются гамильтоновыми со скобкой Пуассона, порожденной операцией коммутирования на алгебре SO(4) в естественном базисе M, γ:

$$\{M_i, M_j\} = \epsilon_{ijk} M_k, \quad \{\gamma_i, \gamma_j\} = \epsilon_{ijk} \gamma_k, \quad \{M_i, \gamma_j\} = 0. \quad (21)$$

Для уравнений (18) гамильтоновость доказана пока лишь при $k = \pm 1$. Функции $F_1 = (M_i M_i), F_2 = (\gamma_i \gamma_i)$ являются функциями Казимира для скобки (21). При редукции на поверхности уровня этих функций выраженная структура (21) становится невырожденной и уравнения движения могут быть записаны в обычной гамильтоновой форме.

Для наших целей, преследующих удобство машинного эксперимента, удобно ввести новые канонические координаты L_1, L_2, ξ, η по формулам:

$$\begin{align*}
M_i &= \sqrt{G_i^2 - L_i^2} \sin \xi, & \gamma_i &= \sqrt{G_i^2 - L_i^2} \sin \eta, \\
M_1 &= \sqrt{G_1^2 - L_1^2} \cos \xi, & \gamma_1 &= \sqrt{G_1^2 - L_1^2} \cos \eta, \\
M_2 &= L_1, & \gamma_2 &= L_2,
\end{align*} \quad (22)$$

где $G_i^2 = M_i^2, G_i^2 = \gamma_i^2$ являются константами интегралов F_1, F_2. На уровне энергии $H=E$ секущая плоскость задается в виде $\xi = \frac{\pi}{2}, \eta > 0$, а координатами на плоскости являются $L_1, \frac{L_2}{G_1}$.

Рис. 5-2, 5-3 показывают поведение системы, если k и m - целые числа.

Рис. 5-2. Неинтегрируемость уравнений Пуанкаре-Лямба-Жуковского $B=IA, C=0, A=\text{diag}(1, 2, 3), k=2$.
6. Движение изменяемого твердого тела. Уравнения Лиувилля

Под уравнениями Лиувилля мы будем понимать в дальнейшем систему, описывающую движение по инерции тела, моменты инерции и внутренний гироскопический момент которого изменяются во времени согласно заданному периодическому закону. В качестве примера можно привести периодическое сжатие и расширение тела за счет изменения температуры. В этом случае уравнения Пуанкаре-Четаева на группе $so(3)$ будут иметь вид:

$$M = M \times \frac{\partial H}{\partial M^*}, \quad H = \frac{1}{2} - (AM,M) - (M,AK).$$

(23)

где M является вектором кинетического момента, а матрица $A = \begin{pmatrix} a_1 & 0 & 0 \\ 0 & a_2 & 0 \\ 0 & 0 & a_3 \end{pmatrix}$ и вектор гироскопического момента $K = (K_1, K_2, K_3)$ являются определенными периодическими функциями времени. Если рассмотреть случай малого изменяющегося твердого тела со свободным гироскопическим моментом, то можно ввести малый параметр μ по формуле:

$$A(t) = A_0 + \mu A_1(t) + \mu^2 A_2(t) + \ldots, \quad A_0 = diag(a_1, a_2, a_3), \quad A_1 = diag(a_1, a_2, a_3).$$

(24)

$$K = \mu K_1(t) + \mu^2 K_2(t) + \ldots.$$

Иде все функции периодические с периодом 2π.
Рис 6-1. Ненинтегрируемость задачи Лиувилля. $A_0=\text{diag}(1, 2, 3), A_1=\text{diag}(0.01, 0, 0), K=0, \mu=1.$

Исследование необходимых условий интегрируемости системы (23), (24) при $a_1 \neq a_2 \neq a_3 \neq a_4$ методом расщепления сепаратрис и нахождение всех квадратичных интегралов проведено в работе [33]. В случае, если все собственные значения матрицы A_n различны, необходимые условия интегрируемости сводятся к

$$A = A_0(1 + \mu f(t) + \ldots),\ K_n(t) = \mu C_n + \ldots,\ C_n = \text{const}.$$
Как показывают рис. 6-1, 6-2 эти условия не являются достаточными. Все найденные в данной задаче интегрируемые случаи сводятся к классическим (Л.Эйлер, Н.Е. Жуковский, В.Вольтепра) некоторой заменой времени.

7. Обобщенная задача о движении неголономного шара

Чаплыгина

В работе [36] С.А.Чаплыгин рассмотрел задачу о качении динамически несимметричного уравновешенного (центр масс совпадает с геометрическим центром) шара по абсолютно шероховатой плоскости. В работе [37] В.В.Козлов обобщил случай Чаплыгина добавлением поля задачи Бруна (которая изоморфна случаю Клейбша в задаче Кирхгофа). Рассмотрим более общую ситуацию, когда шар движется в некотором обобщенно-потенциальном поле (например, заряженный шар движется в магнитном поле). Уравнения движения шара Чаплыгина в силовом поле имеют вид:

\[
\begin{align*}
\dot{M}_a + \omega \times M_a &= M(F) \\
\dot{\gamma} &= \gamma \times \omega,
\end{align*}
\]

(25)

где \(M_a \) - кинетический момент относительно точки контакта:

\[
M_a = I_2 \omega + D\gamma \times (\omega \times \gamma) = I^* \omega - D(\omega, \gamma)\gamma,
\]

(26)

\[
D = ma^2, \quad I^* = I + D, \quad I = \text{diag}(I_1, I_2, I_3),
\]

\[I \] - тензор инерции относительно геометрического центра, \(m \) - масса шара, \(a \) - его радиус, \(M(F) \) - момент внешних сил относительно точки контакта. Величину \(D \) будем называть параметром неголономности.

Если внешние силы являются обобщенно-потенциальными с обобщенным потенциалом \(U(\omega, \gamma) \), то

\[
M(F) = \frac{d}{dt} \left[\frac{\partial U}{\partial \omega} \right] - \frac{\partial U}{\partial \omega} \times \omega - \frac{\partial U}{\partial \gamma} \times \gamma.
\]

(27)

Для обобщенного потенциала \(U \) мы в дальнейшем ограничимся выражением

\[
U = (B'M\gamma) + \frac{1}{2} (C\gamma, \gamma) + (r, \gamma),
\]

(28)

которое охватывает однородное электрическое поле, а также различные поля типа магнитного, ньютоновского, задачи Бруна.

Можно показать [45], что уравнения (25) представимы в виде
\[
\begin{aligned}
M &= M \times \frac{\partial H}{\partial M'} + \gamma \times \frac{\partial H}{\partial \gamma}, \\
\dot{\gamma} &= \gamma \times \frac{\partial H}{\partial M'} , \\
H &= \frac{1}{2} \left(AM'^*, M'^* \right) + \left(BM'^*, \gamma \right) + \frac{1}{2} \left(C', \gamma \gamma \right) + \left(r, \gamma \right) , \\
M' &= M + D(\omega, \gamma) \gamma , \\
M'^* &= M_{c} - D(\omega, \gamma) \gamma - \frac{\partial U}{\partial \omega} , \\
M'^* &= M + D(\omega, \gamma) \gamma
\end{aligned}
\]

и допускают интеграл площадей \(H=(M, \gamma) \), геометрический \((\gamma, \gamma)=1 \) и энергию

\[
E = H - \frac{f^{2}}{2D} \cdot f = \frac{D(AM, \gamma)}{1 - D(A\gamma, \gamma)}
\]

Кроме того, уравнения (29) обладают инвариантной мерой, найденной Чаплыгиным:

\[
\mu = \frac{1}{\sqrt{1 - D(A\gamma, \gamma)}}
\]

Хотя система (29) из общих соображений не является гамильтоновой, для ее анализа полезно применить переменные Андуайе-Депри, в которых \(H=(M, \gamma) \) является параметром.

Используя результаты работы [17], методом расселения сепаратрис можно получить аналитические условия интегрируемости (существования мероморфного интеграла), которые в случае \(r=0 \) сводятся к условиям (13), (14). (При \(D=r=0 \) уравнения (29) сводятся к уравнениям Кирхгофа.) Таким образом, в первом порядке теории возмущений член нетполономности \(D \) не влияет на интегрируемость.

Как было указано, В. В. Козлов обобщил случай Клебша (Бруна) на уравнения (29). Остаётся вопрос, не решаемый аналитическими средствами, о распространении на неголономную систему (29) интегрируемых случаев Ковалевской, Горячева-Чаплыгина, Гесса-Альпертота классической задачи, а также случаев Стеклова и Чаплыгина задачи Кирхгофа (случай Лагранжа и Кирхгофа в этих задачах тривиально обобщаются).
Рис. 7-1. Интегрируемость задачи Чаплыгина в случае, аналогичном интегрируемому случаю Эйлера Пуансо в уравнениях Эйлера-Пуассона. $A = \text{diag}(1, 1/2, 1/3)$, $B = 0$, $C = 0$, $x = 0$, $y = 0$, $z = 0$, $E = 50$, $H = 5$, $D = 2$, $\mu = 0.5$.

Рис. 7-2. Нointегрируемость задачи Чаплыгина в случае, аналогичном интегрируемому случаю Ковалев-ской в уравнениях Эйлера-Пуассона. $A = \text{diag}(1, 1, 2)$, $B = 0$, $C = 0$, $x = 20$, $y = 20$, $z = 0$, $E = 50$, $H = 5$, $D = 1.6$, $\mu = 0.3$.
Рис. 7.3. Ненинтегрируемость задачи Чаплыгина в случае, аналогичном интегрируемому случаю Горечева-Чаплыгина в уравнениях Эйлера-Пуассона. $A=\text{diag}(1, 1, 4), B=0, C=0, x=20, y=20, z=0, E=50, H=0, D=1, \mu=0.3$.

Рис. 7.4. Ненинтегрируемость задачи Чаплыгина в случае, аналогичном интегрируемому случаю Стеклова в задаче Кирхгофа. $A=\text{diag}(1, 2, 3), B=\text{diag}(6, 3, 2), C=\text{diag}(1, 8, 3), x=0, y=0, z=0, E=50, H=5, D=1, \mu=0.3$.
Рис. 7-5. Обобщенный В.В. Козловский на задачу Чаплыгина случай интегрируемости Клебша задачи Кирхгофа. $A=\text{diag}(1, 1/2, 1/3), B=0, C=\text{diag}(1, 2, 3), x=0, y=0, z=0, E=50, H=5, D=1, \mu=0.3$.

Как показывают рис. 7-2, 7-3, 7-4, 7-5, ни один из этих случаев не обобщается непосредственно при ненулевом параметре неголономности D.

Рис. 7-6. Задача Чаплыгина при условиях Гессо-Аппельрота. Неголономное обобщение уравнений Эйлера-Пуассона. $A=\text{diag}(1, 6, 2.66), B=0, C=0, x=4, y=0, z=4, E=50, H=5, D=2, \mu=0.3$.
Остался открытым вопрос о возможности обобщения на эту задачу частного интеграла Гесса уравнений Эйлера-Пуассона. Численные эксперименты не исключают такой возможности (рис. 7-6).

В данной задаче также интегрируем случай, взаимный случаю Клебша, указанному в п. 4 $a_1 = a_2 = a_3$. Это обобщение так называемого третьего случая интегрируемости Клебша на уравнения (29).

8. Движение шара по сфере

Рассмотрим задачу о качении без проскальзывания динамически несимметричного шара радиуса a по сфере радиуса R (рис. 8).

В пределе $R \to \infty$ получается классическая постановка задачи о шаре Чаплыгина. В общем случае уравнения движения такой системы при добавлении фиктивного поля задачи Бруна будут иметь вид:

\[
\begin{align*}
\dot{M} &= M \times \omega + cy \times l\gamma, \\
\dot{c} &= R \gamma \times \omega = ky \times \omega, \\
M &= l\omega + D\gamma \times (\omega \times \gamma), \\
D &= ma^2,
\end{align*}
\]

где M - масса шара, l - тензор инерции относительно геометрического центра. Через γ обозначен единичный вектор в направлении, соединяющем центры шаров.

Рассмотрим случай, когда $k = -1$, то есть $a = 2R$. При таком соотношении радиусов динамически несимметричной сферы обкатывает неподвижный шар вдвое меньшего радиуса.

Отметим, что при $D \rightarrow \infty$, $c \rightarrow 0$ уравнения (30) переходят в уравнения (18), для которых в A и при нечетных k известно счетное семейство интегрируемых случаев. При $k = 1$ получается классическая задача Чаплыгина. При $k = -1$ кроме интегрирующего множителя Чаплыгина существуют интегралы:

\[
\begin{align*}
I_1 &= (M, \omega) - e(\gamma, A^{-1}\gamma), \\
I_2 &= (M, M) + e\text{det}A^{-1}(\gamma, \Lambda\gamma), \\
I_3 &= (M, \Omega\gamma), \\
\Omega &= E - \frac{2A^{-1}}{trA^{-1}},
\end{align*}
\]

которые позволяют проинтегрировать систему (30).

При произвольном нечетном k ответ на вопрос об обобщении интегралов (18) на систему (30), по-видимому, является отрицательным, что подтверждают компьютерные эксперименты (Д.А. и А.А. Батрени); нам более систематически интегрируется при остаточных значениях k.
Рис. 8-1 \(k=0.5, A=\text{diag}(1, 1/2, 1/3), D=0.4 \)

Рис. 8-2 \(k=2, A=\text{diag}(1, 1/2, 1/3), D=0.4 \)
Для целей вычислительного эксперимента уравнения (30) были представлены в виде, аналогичном уравнениям волчка на $SO(4)$ (см. п. 5). Действительно, легко показать, что они имеют вид:

$$
\begin{align*}
\dot{M} &= M \times \frac{\partial H}{\partial M}, \\
\dot{\gamma} &= kg^{-1} \gamma \times \frac{\partial H}{\partial \gamma},
\end{align*}
$$

где g и "гамильониан" H определяются формулами:

$$
\begin{align*}
H &= \frac{1}{2} (AM, M) + \frac{1}{2} g(AM, \gamma), \\
g &= \frac{D(AM, \gamma)}{1 - D(A\gamma, \gamma)}.
\end{align*}
$$

Для численного исследования можно использовать переменные L_1, L_2, ℓ_1, ℓ_2, пересчет которых из переменных (M, γ) определяется формулами (22). Однако, более наглядные результаты получаются при использовании переменных Андуайе-Депри. (Хотя в этом случае невозможна прямая редукция на уровне первых интегралов.)
9. Ограниченная постановка задачи о вращении тяжелого твердого тела вокруг неподвижной точки

Эта постановка была предложена в [38]. Пусть $(0, y, 0)$ - проекция центра масс на оси инерции. Если положить $I_1=I_2, I_3=\delta, y=\delta$ и δ считать малым параметром, то уравнения Эйлера-Пуассона [см. п. 2] можно записать в виде:

\[
\begin{align*}
\dot{\omega}_1 &= (1-\delta)\omega_2, \\
\dot{\omega}_2 &= (\delta-1)\omega_1, \\
\dot{\omega}_3 &= \gamma_1, \\
\dot{\gamma} &= \gamma \times \dot{\omega},
\end{align*}
\] \tag{34}

которые при $\delta=0$ выглядят следующим образом:

\[
\begin{align*}
\dot{\omega}_1 &= \omega_2, \\
\dot{\omega}_2 &= -\omega_1, \\
\dot{\omega}_3 &= \gamma_1.
\end{align*}
\] \tag{35}

Эти уравнения и называются уравнениями "ограниченной" задачи о вращении твердого тела с неподвижной точкой. Они определяют эволюцию собственного вращения твердого тела при $\delta \to 0$ и аналогичны уравнениям ограниченной задачи трех тел в небесной механике.

Уравнения (34) имеют интегралы $\omega_1 + \omega_2 = 2\gamma, \omega_1 \gamma_1 + \omega_2 \gamma_2 = 0, \gamma_1 = 1$.

Положим $\omega_1 = \sqrt{2\gamma} \sin \xi, \omega_2 = \sqrt{2\gamma} \cos \xi$. Тогда можно показать, что переменная ξ удовлетворяет гамильтононой системе с полутора степенями свободы:

\[
\begin{align*}
\dot{\xi} &= \frac{\partial H}{\partial \eta}, \\
\dot{\eta} &= -\frac{\partial H}{\partial \xi},
\end{align*}
\]

\[H = \frac{\eta^2}{2} + \frac{c}{\sqrt{2\gamma}} \cos \xi + \sqrt{1 - \frac{c^2}{2\gamma}} \sin \xi.
\]

Если считать $v = \sqrt{1 - \frac{c^2}{2\gamma}}$ малым параметром, то при $v=0$ система интегрируема, а при $v \neq 0, c \neq 0$ имеется расщепление сепаратрис [38] (рис. 9.1).
Рис. 9.1. Неинтегрируемость ограниченной задачи \(v=0.1 \).

Рис. 9.2. Пересечение сепаратрис в ограниченной задаче. Увеличена верхняя гиперболическая точка рис. 9.1.
В работе [39] численно изучено поведение сепаратрис системы (36) при нулевой константе площадей с=0. Замена времени и координат система (36) представляется в виде уравнений

Рис. 9.3. Неинтегрируемость ограниченной задачи \(v=0.2 \)

Рис. 9.4. Неинтегрируемость ограниченной задачи \(v=0.5 \)
\[
\begin{align*}
\frac{dx}{dt} &= y, \\
\frac{dy}{dt} &= 2\lambda \sin t \sin x, \\
\tau &= \sqrt{2\lambda \tau}, \quad \xi = \frac{\pi}{2} + x.
\end{align*}
\]

Эта система имеет неустойчивое (по крайней мере для \(\lambda = 1, \lambda = 2/2 \)) 2-периодическое по \(\tau \) тривиальное решение \(x(t) = y(t) = 0 \). Если точка \(x = 0, y = 0 \) не является гиперболической, то пересекаются сепаратрисы вторичных резонансов.

Фазовые портреты отображения Пуанкаре и поведение сепаратрис для уравнений (36), (37) приведены на рис. 9.1 - 9.4. На приведенных рисунках отображением Пуанкаре является отображение за период. Можно сделать заключение о неинтегрируемости ограниченной задачи.

Возможно также ограниченная постановка задачи об уравнениях Кирхгофа (см. п. 4), которая также является неинтегрируемой [38].

10. Нелинейная обобщенная задача Г. К. Суслова

Рассмотрим одну систему с неголономной связью, анализы которой сводится к исследованию гамильтоновых уравнений [37]. Это задача о движении твердого тела со связью \((a, \omega) = 0 \) \((a - \) постоянный вектор) в однородном поле сил тяжести \(V = (b, y) \). (частный случай \(b = 0 \) был проинтегрирован Г. К. Сусловым в [40]).

В случае, если \(b = 0 \) и при условии \(a = (0, 0, 1) \), чего всегда можно добиться, не ограничивая общности, уравнения движения тела с заданной связью имеют вид [37]:

\[
\begin{align*}
1. \dot{\omega}_1 &= \epsilon_1 y_2, \\
1. \dot{\omega}_2 &= -\epsilon_1 y_1, \\
\dot{y}_1 &= -\omega_2 y_2, \\
\dot{y}_2 &= \omega_1 y_1.
\end{align*}
\]

Из них легко получить:

\[
\begin{align*}
1. \dot{\omega}_1 &= \epsilon_1 y_1, \\
1. \dot{\omega}_2 &= \epsilon_1 y_2.
\end{align*}
\]

Система (38) обладает интегралом энергии

\[
\frac{1}{2} \left(\dot{\omega}_1 \omega_1 + \dot{\omega}_2 \omega_2 \right) + \epsilon_1 y_1 = h,
\]

который позволяет выразить \(y_1 \) через \(\omega_1, \omega_2 \).

Введя компоненты кинетического момента, уравнения (39) можно переписать в виде:
\[
\begin{aligned}
\dot{M}_1 &= -\frac{\partial V}{\partial M_1}, \\
\dot{M}_2 &= -\frac{\partial V}{\partial M_2}.
\end{aligned}
\]

(41)

Они совпадают с уравнениями плоского движения материальной точки в потенциальном силовом поле. При \(h\neq 0 \) несуществование дополнительного мероморфного (в комплексном смысле) интеграла системы (41) было доказано в [41]. При \(h=0 \) несуществование дополнительного первого интеграла доказано при всех \(\alpha \) (при \(\alpha=1 \) получается интегрируемый аналог случая Лагранжа), исключая случаи:

1. \(\omega \neq r \),
2. \(\sqrt{2} \cos \pi \omega \neq \cos \pi r \),

\[
(\omega = \frac{\sqrt{1 + 8\alpha}}{4}, \quad \alpha = \frac{1}{2}, \frac{3}{2}, \frac{5}{2}).
\]

(42)

Используя методику вычисления показателей Ковалевской, изложенную в [9] можно показать, что общее решение (38) является ветвящимся на комплексной плоскости времени при всех значениях \(\alpha \neq 1 \).

Рис. 10.1. Отображение Пуанкаре задачи Г.К. Суслов. Условия Зылихова выполнены: \(I = [1, 3], E = 100, h = 0 \).
На рис. 10-1, 10-2 показано поведение системы при различных α. В качестве секущей плоскости выбрана плоскость $M_2 > 0$, $M_3 > 0$. Рис. 10-1, выполненный при соблюдении условий (42), показывает, что в этом случае также имеются невырожденные резонансы. Это свидетельствует о недостаточности условий (42) для полной интегрируемости. Численное изучение родственной задачи — двухкомпонентной модели Янга-Миллса было выполнено в [42].

11. Движение спутника с солнечным парусом

Широкий класс механических систем описывается гамильтоновыми уравнениями с негладкой функцией Гамильтона. Такая ситуация возникает при представлении в гамильтоновом виде уравнений движения систем с упругими соударениями.

Негладкие гамильтонианы возникают также в небесной механике, например в задаче о движении спутника с плоским солнечным парусом [43, 44]. На такие случаи могут быть перенесены некоторые классические результаты теории возмущений [44].

Гелиоцентрический спутник с солнечным парусом состоит из твердого тела и пластины, жестко скрепленных между собой штангой, соединяющей центр масс всей системы и геометрический центр пластины. Эта плита выполняет роль солнечного паруса и ее поверхность представляет собой абсолютно черное тело. Если парус расположен перпендикулярно штанге, то уравнения движения системы имеют вид (10) с гамильтонианом
\[H = H_0 + \mu H_1, \]
\[H_0 = \frac{1}{2}(AM, M), \quad H_1 = \frac{1}{2}(r, y)(r, y). \] (43)

где \(\mu \) характеризует интенсивность светового потока, а вектор \(r = (x, y, z) \) задает направление оси штанги в связанной с телом системе координат.

Для изучения движения в системе (43) можно также воспользоваться переменными Андреи-Депри. При \(a_x = a_z, \quad x = y = 0, \quad z = 1 \) получается аналог интегрируемого случая Лагранжа, который также является интегрируемым. При возмущении этого случая образуются стохастические слои и задача становится неинтегрируемой в смысле существования интегралов, составленных из частей аналитических функций [рис. 11-1].

Рис. 11-1. Возмущение интегрируемого случая Лагранжа в задаче о движении спутника с солнечным по-русом \(A = \text{diag}(2, 2, 0.3), \quad x=0.5, \quad y=0.5, \quad z=3, \quad \mu=2 \)
Заключение

Изложенные в данном препринте численные и аналитические результаты об интегрируемости различных задач динамики твердого тела подтверждаю, что большинство этих задач не являются интегрируемыми в общем случае, и для интегрируемости необходимы дополнительные ограничения на параметры задачи и, в частных случаях, на начальные данные. Основная часть этих интегрируемых ситуаций была найдена классиками еще в прошлом веке. С современной точки зрения это случаи, при которых движение системы является регулярным, тогда как в остальных случаях присутствует локальное экспоненциальное разбегание траекторий, которое приводит к хаотизации движения. Однако, в некоторых интегрируемых случаях сложение фазового пространства на инвариантные торы также может быть весьма сложным (волчок Ковалевской), и характерный период движения становится достаточно большим. Этим, видимо, объясняется неудача экспериментов Н.И. Мерцалова, пытающегося выявить общий закономерности движения волчка Ковалевской.

Для строгого компьютерного доказательства неинтегрируемости в различных ситуациях нами используется метод, основанный на изучении поведения возмущенных сепаратрис. Несуществование достаточного числа первых интегралов связано с трансверсальным пе-
рессением сепаратрис. Факт такого пересечения был установлен для большинства задач динамики твердого тела.

Авторы благодарят В.В. Козлова, А.В. Цыганцева за полезные обсуждения, а также А.И. Бодика за участие в написании программного комплекса.

Литература

[12] Мерцалов Н.И. Задача о движении твердого тела, имеющего неподвижную точку при A=B=4C и интеграл площадей k=0. Изв. АН СССР, Отд.ние техн. наук, 1946, № 5, c. 697-701.

[27] Монахов С.В. Замечание об интегрируемости уравнений Эйлера п-мерного твердого тела. Функ. ан. и его прилож., т. 10, вып. 4, 1976, с. 93-94.

[31] Навиков С.П. Гамильтонов формализм и многозначный аналог функции Морса. УМН, 1982, т. 37, вып. 2 (227), с. 3-49.

[38] Козлов В.В., Трещев Д.В. Неинтегрируемость общей задачи о вращении динамически несимметричного тела с неподвижной точкой. 2, Вестник МГУ, сер. мат. мех., 1986, № 1, с. 39-44.
[40] Суслов Г.К. Теоретическая механика. М.-Л., Гостехиздат, 1946.
[45] Борисов А.В. Неинтегрируемость уравнений Кирхгофа и родственных задач динамики твердого тела. Диссертация на соиск. уч. ст. к. ф.-м. н. М., МГУ.
Борисов Алексей Владимирович, Емельянов Константин Владимирович
Нелинейная динамика и стохастичность в динамике твердого тела

Редактор, корректор В. И. Емельянов
Компьютерная подготовка

Лицензия ЛР № 020411 от 12.02.92. Сдано в производство 22.08.95
Формат 60×84 1/16. Печать офсетная. Уч. печ. л. 3,6. Уч. изд. л. 3,0. Заказ № 1491. Тираж 200 экз.

Издательство Удмуртского университета, 426034, Ижевск, Красноармейская, 71.

Типография объединения "Полиграфия", 426034, Ижевск, Удмуртская, 237.