ORDINARY
DIFFERENTIAL EQUATIONS

On the Stability Degree

V. V. Kozlov and A. A. Karapetyan
Moscow State University, Moscow, Russia
Received March 22, 2004

1. STABILITY DEGREE AND INDICES OF INERTIA

Consider a linear Hamiltonian system in \(\mathbb{R}^{2n} = \{ x \} \) with the standard symplectic structure. Let \(x = (p_1, \ldots, p_n, q_1, \ldots, q_n) \) be the canonical variables (the set of momenta and coordinates), and let the Hamiltonian have the form
\[
H = \frac{1}{2}(Bx, x),
\]
where \(B \) is a symmetric linear operator. Then the canonical equations can be represented in the form
\[
\dot{x} = Ax,
\]
where
\[
A = IB, \quad I = \begin{pmatrix} 0 & -E \\ E & 0 \end{pmatrix}.
\]
In the variables \(p \) and \(q \), Eq. (2) acquires the usual form of Hamiltonian equations
\[
\dot{p}_k = -\frac{\partial H}{\partial q_k}, \quad \dot{q}_k = \frac{\partial H}{\partial p_k} \quad (1 \leq k \leq n).
\]
Let \(A \) be a nondegenerate operator: \(|A| \neq 0 \) (This is equivalent to the condition \(|B| \neq 0 \).) Then the eigenvalues of \(A \) can be of three types: real pairs \(\pm a \), pure imaginary pairs \(\pm ib \), and quadruples \(\pm a \pm ib \).

It was shown in [1] that the linear system (2) with nondegenerate operator \(A \) that admits an integral in the form of a nondegenerate quadratic form (1) can always be reduced to a system of Hamiltonian equations. Therefore, the theory developed below applies to this (formally, more general) case.

The instability degree \(u \) of system (2) is defined as the number of roots (counted according to their multiplicities) of the characteristic equation of \(A \) in the right half-plane, and the stability degree \(s \) is defined as the number of pure imaginary roots (counted according to their multiplicities) of the characteristic equation of \(A \). By \(i^+ \) and \(i^- \) we denote the positive and negative indices of inertia of the quadratic form (1).

By the Thomson theorem [2],
\[
u \equiv i^- \mod 2.
\]
In particular, if \(i^- \) (or \(i^+ \)) is odd, then so is \(u \). Consequently, the characteristic polynomial of \(A \) necessarily has a positive real root in this case; therefore, \(x = 0 \) is an unstable equilibrium.

The following assertion is the main result of the present paper.

0012-2661/05/4102-0195 c\textcopyright \textregistered 2005 Pleiades Publishing, Inc.
Theorem 1. One has

\[|i^+ - i^-| \leq 2l, \]

where \(l \) is the number of pairs of pure imaginary eigenvalues of \(A \) with Jordan blocks of odd order.

Corollary. One has

\[|i^+ - i^-| \leq 2s. \] (5)

Inequality (5) was indicated in [4] for the typical case in which all roots of the characteristic polynomial are simple. In what follows, we prove Theorem 1 in the general case of multiple roots with the use of the Williamson theory of real normal forms of linear Hamiltonian equations [5]. The Thomson theorem can readily be proved by the same method.

Consider an illustrative example. Let \(i^- = 1 \). Then, by the Thomson theorem, there exists a real pair \(\pm a \) of eigenvalues. Furthermore, all other eigenvalues are pure imaginary by inequality (5). Moreover, in this case, the matrix \(A \) can be reduced to a diagonal form by Theorem 1. This situation is typical for the case in which the total energy \(H \) lacks positive definiteness.

2. PROOF OF THEOREM 1

By the Williamson theorem, the space \(\mathbb{R}^{2n} \) can be decomposed into a direct sum of skew-orthogonal subspaces such that the form (1) is equal to the sum of quadratic forms (partial Hamiltonians) on these subspaces; moreover, the following assertions are valid:

(a) to a real pair \(\pm a \) of eigenvalues of order \(k \), there corresponds a partial Hamiltonian

\[H = -a \sum_{j=1}^{k} p_j q_j + \sum_{j=1}^{k-1} p_j q_{j+1}; \]

(b) to a quadruple \(\pm a \pm ib \) of order \(k \), there corresponds a Hamiltonian

\[H = -a \sum_{j=1}^{2k} p_j q_j + b \sum_{j=1}^{k} (p_{2j-1}q_{2j} - p_{2j}q_{2j-1}) + \sum_{j=1}^{2k-2} p_j q_{j+2}; \]

(c) to a pure imaginary pair \(\pm ib \) of order \(2k + 1 \), there corresponds a Hamiltonian

\[H = \pm \frac{1}{2} \left[\sum_{j=1}^{k} \left(b^2 p_{2j}p_{2k-2j+2} + q_{2j}q_{2k-2j+2} \right) \right. \\
\left. - \sum_{j=1}^{k+1} \left(b^2 p_{2j-1}p_{2k-2j+3} + q_{2j-1}q_{2k-2j+3} \right) \right] - \sum_{j=1}^{2k} p_j q_{j+1}; \]

(d) to a pure imaginary pair \(\pm ib \) of order \(2k \), there corresponds a Hamiltonian

\[H = \pm \frac{1}{2} \left[\sum_{j=1}^{k} \left(b^{-2} q_{2j-1}q_{2k-2j+1} + q_{2j}q_{2k-2j+2} \right) \right. \\
\left. - \sum_{j=1}^{k-1} \left(b^2 p_{2j+1}p_{2k-2j+1} + p_{2j}+2p_{2k-2j+2} \right) \right] - b^2 \sum_{j=1}^{k} p_{2j-1} q_{2j} + \sum_{j=1}^{k} p_{2j} q_{2j-1}. \]

Let us find the signatures of each of these Hamiltonians. In case (a), we have

\[H = -ap_1 q_1 + \sum_{j=2}^{k} (p_{j-1} - ap_j) q_j = \sum_{j=1}^{k} \tilde{p}_j \tilde{q}_j, \]
where \(\tilde{p} = Cp, \tilde{q} = q \), and \(C \) is the bidiagonal matrix with main diagonal \((-a, \ldots, -a)\) and unit subdiagonal, \(|C| \neq 0 \). Hence we find that the pair \(\pm a \) of order \(k \) gives the signature \(\begin{pmatrix} + & \cdots & \pm & - & \cdots & - \end{pmatrix} \).

Note that here and throughout the following the new variables \(\tilde{p} \) and \(\tilde{q} \) are not necessarily canonical. However, this makes no difference for the computation of the signature.

In case (b), the Hamiltonian \(H \) acquires the form

\[
H = -a \sum_{j=1}^{2k} p_j q_j + b \sum_{j=1}^{k} (p_{2j-1} q_{2j} - p_{2j} q_{2j-1}) + \sum_{j=1}^{2k-2} p_j \tilde{q}_j + \sum_{j=1}^{2k} \tilde{p}_j \tilde{q}_j,
\]

where \(\tilde{p} = Cp, \tilde{q} = q \), and

\[
C = \begin{pmatrix}
-a & -b & 0 & 0 & \ldots & 0 \\
b & -a & 0 & 0 & \ldots & 0 \\
1 & 0 & -a & -b & \ldots & 0 \\
0 & 1 & b & -a & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & 1 & b & -a \\
\end{pmatrix}, \quad |C| \neq 0.
\]

Hence it follows that the quadruple \(\pm a \pm ib \) of order \(k \) gives the signature \(\begin{pmatrix} + & \cdots & + & - & \cdots & - \end{pmatrix} \).

In case (c), we have

\[
H = \pm \frac{1}{2} \left[\sum_{j=1}^{k} \left(b^2 p_j p_{2k-2j+2} + q_j q_{2k-2j+2} \right) \right. \\
- \sum_{j=1}^{k+1} \left(b^2 p_{2j-1} p_{2k-2j+3} + q_{2j-1} q_{2k-2j+3} \right) \left. \right] - \sum_{j=1}^{2k} p_j q_j + 1
\]

\[
= \pm \frac{1}{2} \sum_{j=1}^{2k+1} (-1)^j \left(b^2 p_j p_{2k+2-j} + q_j q_{2k+2-j} \right) - \sum_{j=1}^{2k} p_j q_j + 1
\]

\[
= \pm \sum_{j=1}^{k} \left(-1 \right)^j \left(b^2 p_j p_{2k+2-j} + q_j q_{2k+2-j} \right) + \frac{1}{2} \left(-1 \right)^{k+1} \left(b^2 p_{k+1}^2 + q_{k+1}^2 \right) - \sum_{j=1}^{2k} p_j q_j + 1
\]

\[
= \pm \sum_{j=1}^{k} p_j \left((-1)^j b^2 p_{2k+2-j} \mp q_{j+1} \right) + \sum_{j=k+2}^{2k+1} q_j \left((-1)^j q_{2k+2-j} \mp p_{j-1} \right)
\]

\[
\pm \frac{1}{2} \left(-1 \right)^{k+1} \left(b^2 p_{k+1}^2 + q_{k+1}^2 \right)
\]

\[
= \pm \sum_{j=1, j \neq k+1}^{2k+1} \tilde{p}_j \tilde{q}_j \left(-1 \right)^{k+1} \left(\tilde{p}_{k+1}^2 + \tilde{q}_{k+1}^2 \right),
\]

where

\[
\tilde{p}_j = p_j, \quad j = 1, \ldots, k;
\]

\[
\tilde{p}_{k+1} = 2^{-1/2} q_{k+1}, \quad \tilde{p}_j = (-1)^j q_{2k+2-j} \mp p_{j-1}, \quad j = k+2, \ldots, 2k+1;
\]

\[
\tilde{q}_j = (-1)^j b^2 p_{2k+2-j} \mp q_{j+1}, \quad j = 1, \ldots, k;
\]

\[
\tilde{q}_{k+1} = 2^{-1/2} b p_{k+1}, \quad \tilde{q}_j = q_j, \quad j = k+2, \ldots, 2k+1.
\]

One can readily see that the transition matrix is nondegenerate. Consequently, the pair \(\pm ib \) of order \(2k+1 \) gives the signature \(\begin{pmatrix} + & \cdots & + & - & \cdots & - \end{pmatrix} \) or \(\begin{pmatrix} + & \cdots & + & - & \cdots & - \end{pmatrix} \).
(d) Finally, for the pure imaginary pair $\pm ib$ of order $2k$, we consider two cases. If $k = 2l + 1$ (k is odd), then we have

$$H = \pm \sum_{j=1}^{l} \left(b^{-2} q_{2j-1} q_{4l-2j+3} + q_{2j} q_{4l-2j+4} \right) \pm \frac{1}{2} \left(b^{-2} q_{2l+1}^2 + q_{2l+2}^2 \right)$$

\[+ \sum_{j=1}^{l} \left(b^2 p_{2j-1+1} p_{4l-2j+3} + p_{2j+2} q_{4l-2j+4} \right) - b^2 \sum_{j=1}^{2l+1} p_{2j-1} q_{2j} + \sum_{j=1}^{2l+1} p_{2j} q_{2j-1} \]

\[= \sum_{j=1}^{l} \left[q_{2j-1} \left(p_{2j} \pm b^{-2} q_{4l-2j+3} \right) + q_{2j} \left(-b^2 p_{2j-1} \pm q_{4l-2j+4} \right) \right] \]

\[+ q_{2l+1} \left(p_{2l+2} \pm \frac{1}{2} b^{-2} q_{2l+1} \right) + q_{2l+2} \left(-b^2 p_{2l+1} \pm \frac{1}{2} q_{2l+2} \right) \]

\[+ \sum_{j=l+2}^{2l+1} \left(b^2 p_{2j-1} p_{4l-2j+5} + p_{2j} p_{4l-2j+6} \right) - b^2 \sum_{j=l+2}^{2l+1} p_{2j-1} q_{2j} + \sum_{j=l+2}^{2l+1} p_{2j} q_{2j-1} \]

\[= \sum_{j=1}^{l} \left[q_{2j-1} \left(p_{2j} \pm b^{-2} q_{4l-2j+3} \right) + q_{2j} \left(-b^2 p_{2j-1} \pm q_{4l-2j+4} \right) \right] \]

\[+ q_{2l+1} \left(p_{2l+2} \pm \frac{1}{2} b^{-2} q_{2l+1} \right) + q_{2l+2} \left(-b^2 p_{2l+1} \pm \frac{1}{2} q_{2l+2} \right) \]

\[+ \sum_{j=l+2}^{2l+1} \left[p_{2j-1} \left(\mp b^2 p_{4l-2j+5} - b^2 q_{2j} \right) + p_{2j} \left(\mp p_{4l-2j+6} + q_{2j-1} \right) \right] \]

\[= \sum_{j=1}^{4l+2} \tilde{p}_j \tilde{q}_j = \sum_{j=1}^{2k} \tilde{p}_j \tilde{q}_j, \]

where

\[\tilde{p}_{2j-1} = p_{2j} \pm b^{-2} q_{4l-2j+3}, \quad \tilde{p}_{2j} = -b^2 p_{2j-1} \pm q_{4l-2j+4}, \quad j = 1, \ldots, l, \]

\[\tilde{p}_{2l+1} = p_{2l+2} \pm \frac{1}{2} b^{-2} q_{2l+1}, \quad \tilde{p}_{2l+2} = -b^2 p_{2l+1} \pm \frac{1}{2} q_{2l+2}, \]

\[\tilde{p}_j = p_j, \quad j = 2l + 3, \ldots, 4l + 2; \]

\[\tilde{q}_j = q_j, \quad j = 1, \ldots, 2l + 2; \]

\[\tilde{q}_{2l+2j+1} = \mp b^2 p_{2l-2j+3} - b^2 q_{2l+2j+2}, \quad \tilde{q}_{2l+2j+2} = \mp p_{2l-2j+4} - q_{2l+2j+1}, \quad j = 1, \ldots, l. \]

But if $k = 2l$ (k is even), then

$$H = \pm \sum_{j=1}^{l} \left(b^{-2} q_{2j-1} q_{4l-2j+1} + q_{2j} q_{4l-2j+2} \right) \pm \frac{1}{2} \left(b^2 p_{2l+1}^2 + q_{2l+2}^2 \right)$$

\[+ \sum_{j=1}^{l-1} \left(b^2 p_{2j+1} p_{4l-2j+1} + p_{2j+2} q_{4l-2j+2} \right) - b^2 \sum_{j=1}^{2l} p_{2j-1} q_{2j} + \sum_{j=1}^{2l} p_{2j} q_{2j-1} \]

\[= \sum_{j=1}^{l} \left[q_{2j-1} \left(p_{2j} \pm b^{-2} q_{4l-2j+1} \right) + q_{2j} \left(-b^2 p_{2j-1} \pm q_{4l-2j+2} \right) \right] \]

\[+ p_{2l+1} \left(\mp b^2 p_{2l+1} \pm b^2 q_{2l+2} \right) + p_{2l+2} \left(\mp \frac{1}{2} p_{2l+2} + q_{2l+1} \right) \]

\[+ \sum_{j=l+2}^{2l} \left(b^2 p_{2j-1} p_{4l-2j+3} + p_{2j} p_{4l-2j+4} \right) - b^2 \sum_{j=l+2}^{2l} p_{2j-1} q_{2j} + \sum_{j=l+2}^{2l} p_{2j} q_{2j-1} \]
Table

<table>
<thead>
<tr>
<th>Eigenvalue</th>
<th>Order</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pm a$</td>
<td>k</td>
<td>$+\cdots+\cdots-$</td>
</tr>
<tr>
<td>$\pm a \pm ib$</td>
<td>k</td>
<td>$+\cdots+\cdots-$</td>
</tr>
<tr>
<td>$\pm ib$</td>
<td>odd k</td>
<td>$+\cdots+\cdots-$</td>
</tr>
<tr>
<td>$\pm ib$</td>
<td>even k</td>
<td>$+\cdots+\cdots-$</td>
</tr>
</tbody>
</table>

\[
= \sum_{j=1}^{l} \left[q_{2j-1} \left(p_{2j} + b^2 q_{4l-2j+1} \right) + q_{2j} \left(-b^2 p_{2j-1} + q_{4l-2j+2} \right) \right] \\
+ p_{2l+1} \left(\mp \frac{1}{2} b^2 p_{2l+1} - b^2 q_{2l+2} \right) + p_{2l+2} \left(\mp \frac{1}{2} p_{2l+2} + q_{2l+1} \right) \\
+ \sum_{j=l+2}^{2l} \left[p_{2j-1} \left(\mp b^2 p_{4l-2j+3} - b^2 q_{2j} \right) + p_{2j} \left(\mp p_{4l-2j+4} + q_{2j-1} \right) \right] = \sum_{j=1}^{4l} \tilde{p}_j \tilde{q}_j = \sum_{j=1}^{2k} \tilde{p}_j \tilde{q}_j, \\
\]

where

\[
\tilde{p}_{2j-1} = p_{2j} + b^2 q_{4l-2j+1}, \quad \tilde{p}_{2j} = -b^2 p_{2j-1} + q_{4l-2j+2}, \quad j = 1, \ldots, l, \\
\tilde{q}_{j} = p_{j}, \quad j = 2l+1, \ldots, 4l; \\
\tilde{q}_{j} = q_{j}, \quad j = 1, \ldots, 2l; \\
\tilde{q}_{2l+1} = \mp \frac{1}{2} b^2 p_{2l+1} - b^2 q_{2l+2}, \quad \tilde{q}_{2l+2} = \mp \frac{1}{2} p_{2l+2} + q_{2l+1}, \\
\tilde{q}_{2l+2j} = \mp b^2 p_{2l-2j+3} - b^2 q_{2l+2j+2}, \quad j = 1, \ldots, l - 1, \\
\tilde{q}_{2l+2j+1} = \mp p_{2l-2j+4} + q_{2l+2j+1}, \quad j = 1, \ldots, l - 1. \\
\]

One can show that the transition matrix is nondegenerate in both cases. Therefore, the pair $\pm ib$ of order $2k$ gives the signature $+\cdots+\cdots-\cdots$.

The results of computations are represented in the table.

Let l be the number of pairs of pure imaginary eigenvalues of A with odd multiplicities, and let k_1, \ldots, k_l be their multiplicities; moreover, let $k_{l+1}, \ldots, k_{l'}$ be the multiplicities of eigenvalues corresponding to signatures of the form $+\cdots+\cdots-$; and let $k_{l+1}, \ldots, k_{l'}$ be multiplicities of eigenvalues corresponding to signatures of the form $+\cdots+\cdots-\cdots$; let m be the number of pairs of pure imaginary eigenvalues of A with even multiplicities, and let k_1', \ldots, k_m' be their multiplicities. Then the positive and negative indices i^+ and i^- of inertia of the quadratic form (1) are equal to

\[
i^+ = u + \sum_{i=1}^{l} (k_i \pm 1) + \sum_{i=1}^{l} (k_i \mp 1) + \sum_{i=1}^{m} k_i', \\
i^- = \sum_{i=1}^{l} k_i + \sum_{i=1}^{m} k_i'.
\]

and the stability degree is equal to $s = \sum_{i=1}^{l} k_i + \sum_{i=1}^{m} k_i'$. Obviously, the stability degree s is even if and only if so is l. Consider the difference

\[
i^+ - i^- = 2l_1 - 2(l - l_1) = 4l_1 - 2l
\]

of indices of inertia, whence we find that first, $|i^+ - i^-| \leq 2l \leq 2s$ (since $l_1 \leq l \leq s$), which completes the proof of Theorem 1, and second, $i^+ - i^- \equiv 0 \mod 4$ if and only if l is even. Since $s \equiv l \mod 2$, it follows that the stability degree s is even if and only if condition (4) is satisfied.
Note also that the formulas for the indices of inertia readily imply the Thomson theorem (3). Indeed, it suffices to note that the integers \(k_i \) (respectively, \(k'_i \)) are odd (respectively, even).

3. AN APPLICATION TO THE GYROSCOPIC STABILIZATION PROBLEM

Consider the equation of motion of a mechanical system subjected to gyroscopic and potential forces:

\[
\ddot{z} + \Gamma \dot{z} + Pz = 0, \quad z \in \mathbb{R}^n, \tag{6}
\]

where \(\Gamma^t = -\Gamma \) and \(P^t = P \). The term \(-\Gamma \dot{z}\) is referred to as the gyroscopic force, and \(-Pz\) is referred to as the potential force acting on the system with \(n \) degrees of freedom. The signature of the corresponding Hamiltonian [the total energy \(H = (1/2)(\ddot{z}, \ddot{z}) + (1/2)(Pz, z) \)] has the form \(+ \cdots + + - \cdots - \). Here \(u \) is the instability degree of the linear system in the absence of the gyroscopic force (the Poincaré instability degree \(u \) is determined by the matrix \(P \)), and accordingly, \(n - u \) is the stability degree in the absence of the gyroscopic force. By (5), \(|i^+ - i^-| = |2n - 2u| \leq 2s \), which implies that \(n - u \leq s \), where \(s \) is the stability degree of the linear system described by Eq. (6). Therefore, we obtain the following important assertion.

Theorem 2. The addition of gyroscopic forces does not diminish the stability degree of a system.

This result supplements the classical Thomson theorem on the possibility of a gyroscopic stabilization of a system with even Poincaré instability degree [2].

Now in Eq. (6), we replace the matrix \(\Gamma \) of gyroscopic forces by \(\mu \Gamma \), \(\mu \in \mathbb{R} \). We consider the case in which \(P < 0 \), so that the potential energy \((1/2)(Pz, z) \) attains the maximum value at the equilibrium \(z = 0 \). If \(\| \Gamma \| \neq 0 \), then for sufficiently large \(\mu \), the equilibrium \(z = 0 \) becomes stable [6, 7]. Since the matrix \(\Gamma \) is skew-symmetric, it follows that \(n \) is even.

Theorem 3. Let \(n \) be odd, and let \(\operatorname{rank} \Gamma = n - 1 \). If \(\mu \geq \mu_0 \), then the instability degree of system (6) is equal to 1.

Since \(n \) is odd and \(P < 0 \), it follows from the Thomson theorem that \(u \geq 1 \). Theorem 3 implies that, for nonsingular matrices of gyroscopic forces and for sufficiently large values of the parameter \(\mu \), the instability degree attains the minimum possible value \(u = 1 \).

Proof of Theorem 3. In addition to the energy integral \(H \), system (6) admits the integral

\[
F = \frac{1}{2} (P^{-1} \dot{z}, \dot{z}) - (\Gamma P^{-1} \dot{z}, z) + \frac{1}{2} \left((E - \Gamma P^{-1} \Gamma) z, z \right).
\]

Here \(E \) is the identity \(n \times n \) matrix. We replace \(\Gamma \) by \(\mu \Gamma \) and consider the quadratic integral

\[
\Phi = 2H - 2F/\mu^{3/2} = (\dot{z}, \dot{z}) + (Pz, z) - \mu^{1/2} (P^{-1} \Gamma z, \Gamma z) + O(\mu^{-1/2}).
\]

First, we note that, for large \(\mu \), this quadratic form is nondegenerate. Indeed, the determinant \(\sqrt{\mu \Gamma P^{-1} \Gamma + P} \) is a polynomial in \(\sqrt{\mu} \), which is nonzero for \(\mu = 0 \). Consequently, this determinant does not vanish for \(\mu \geq \mu_0 \). Further, by assumption, the quadratic form \(-(P^{-1} \Gamma z, \Gamma z) \) is nonnegative and vanishes only on the one-dimensional subspace \(\ker \Gamma \), where \((Pz, z) \) is a negative definite form. Therefore, for large \(\mu \), the negative index of inertia of the nondegenerate quadratic integral \(\Phi \) is equal to 1. Now we use the following result in [1]: by a linear change of variables, one can reduce system (6) to linear Hamiltonian equations with the nondegenerate quadratic integral \(\Phi \) playing the role of the Hamiltonian. It remains to use inequality (5).

Remark. The inequality

\[
u \leq i^-
\]

was proved in [8, 9] for a Hamiltonian system of the form (6); here \(i^- \) is the negative index of inertia of the nondegenerate potential energy \((1/2)(Pz, z) \). Using the relations \(i^+ + i^- = 2n \) and \(u + s = n \), we find that inequality (7) is equivalent to (5). Inequality (7) was refined in [10]. This refinement
was based on a generalization of the Pontryagin theorem on self-adjoint operators in spaces with indefinite metric. Our approach, applied to linear Hamiltonian systems of general form, is based on the Williamson theory of normal forms.

ACKNOWLEDGMENTS

The authors are grateful to A.A. Shkalikov for the discussion of the problems considered in the present paper.

The work was financially supported by the Russian Foundation for Basic Research (project no. 02-01-01059) and the Program of supporting leading scientific schools (project no. NSh 136.2003.1).

REFERENCES

2. Chetaev, N.G., Ustoichivost’ dvizheniya (Stability of Motion), Moscow, 1955.