Вестник
МОСКОВСКОГО
УНИВЕРСИТЕТА

МАТЕМАТИКА,
МЕХАНИКА

6

Отдельный оттиск

1976
Вестник
МОСКОВСКОГО УНИВЕРСИТЕТА
№ 6 — 1976

УДК 531.38

В. В. КОЗЛОВ

РАСШЕПЛЕНИЕ СЕПАРАТРИС ВОЗМУЩЕННОЙ ЗАДАЧИ ЭЙЛЕРА — ПУАНСО

§ 1. Постановка задачи. Функция Гамильтона задачи о вращении тяжелого твердого тела с неподвижной точкой имеет следующий вид:

\[F = F_0 + \mu F_1, \]

где \(F_0 \) — кинетическая энергия (гамильтона задачи Эйлера — Пуансо), а \(\mu F_1 \) — потенциальная энергия системы. Выделенный постоянный множитель \(\mu \), параметр Пуанкаре, — произведение веса тела на расстояние от центра тяжести до точки подвеса. Считаем параметр \(\mu \) малым. Тогда рассматриваемая задача является возмущением интегрируемой задачи Эйлера — Пуансо.

При анализе канонических уравнений с гамильтонаном (1) будут использованы переменные Депри: \(lghLGH \). Подробное описание этих канонических переменных содержится в работе [1]. Функция \(F \) не зависит от координат \(h \); следовательно, \(H \) — первый интеграл уравнений движения (интеграл площадей). Фиксируя его постоянную, сведем задачу к системе с двумя степенями свободы.

Пусть сначала \(\mu = 0 \). В переменных Депри функцию \(F_0 \) запишем следующим образом:

\[F_0 = \frac{1}{2} (a \sin^2 l + b \cos^2 l) (G^2 - L^2) + \frac{c}{2} L^2, \]

где \(a, b, c \) — величины, обратные главным моментам инерции твердого тела. Далее всюду рассматриваем несимметричное тело и без ущерба общности считаем, что \(a < b < c \). При каждом значении интеграла энергии \(F_0 \) уравнения задачи Эйлера — Пуансо имеют два изолированных периодических решения гиперболического типа — постоянные вращения тела вокруг средней оси инерции в противоположных направлениях. Записанные в переменных Депри, они таковы:

\[\Gamma_i: l = \pi (i - 1), \quad g = G_0 b, \quad L = 0, \quad G = G_0 \quad (F_0 = bG_0^2), \quad i = 1, 2. \]

Через траектории решений (2) проходят две двумерные инвариантные асимптотические поверхности с уравнениями
\[L = \pm \frac{G_0 \sqrt{b - a \sin l}}{\sqrt{c - a \sin^2 l - b \cos^2 l}}, \quad G = G_0. \]
(3)

Эти поверхности называются сепаратрисами. Они сплошь заполнены траекториями, неограниченно приближающимися при \(t \rightarrow \pm \infty \) к траекториям периодических решений \(\Gamma_1 \) и \(\Gamma_2 \).

Невырожденность периодических решений (2) задачи Эйлера — Пуансо, установленная в работе [4], позволяет рассмотреть задачу о расщеплении сепаратрис (3) при малых значениях параметра \(\mu \).

§ 2. Расщепление сепаратрис задачи Эйлера — Пуансо. Рассмотрим поведение асимптотических поверхностей (3) при малых \(\mu \) в случае, когда центр тяжести тела лежит на средней оси инерции. При этом возмущающая функция \(F_1 \) представима следующим образом:

\[F_1 = \frac{H}{G} \sqrt{1 - \frac{L^2}{G^2}} \cos l \cdot \sqrt{1 - \frac{H^2}{G^2}} \left(\frac{L}{G} \cos l \cos g - \sin l \sin g \right). \]

Теорема. Если центр тяжести тела находится на средней оси инерции, то асимптотические поверхности (3) расщепляются при малых значениях параметра \(\mu \).

Доказательство. Для определенности рассмотрим случай, когда в первом уравнении системы (3) стоит знак плюс. В другом случае доказательство аналогично.

Уравнения асимптотической поверхности, проходящей через траекторию возмущенного периодического решения \(\Gamma_1 \), можно представить в виде

\[L = \frac{\partial S}{\partial i}, \quad G = \frac{\partial S}{\partial g}, \quad S = S_0 + \mu S_1 + \ldots, \]

где \(S \) — функция от \(l \) и \(g \), удовлетворяющая уравнению

\[F_0 \left(l, \frac{\partial S}{\partial l}, \frac{\partial S}{\partial g} \right) + \mu F_1 \left(l, g, \frac{\partial S}{\partial l}, \frac{\partial S}{\partial g} \right) = F_0 (= G_0^2) \]

(см. [2, гл. VII]). Когда \(\mu = 0 \),

\[S = S_0 = G_0 g + \int_0^l \frac{\sqrt{b - a \cdot G_0 \sin x}}{\sqrt{c - a \sin^2 x - b \cos^2 x}} \, dx. \]

Что касается функции \(S_1 \), то она должна удовлетворять уравнению

\[(a \sin^2 l + b \cos^2 l) \left(G_0 \frac{\partial S_1}{\partial g} - L \frac{\partial S_1}{\partial l} \right) + c L \frac{\partial S_1}{\partial l} + \]

\[+ \frac{H}{G_0} \sqrt{1 - \frac{L^2}{G_0^2}} \cdot \cos l \cdot \sqrt{1 - \frac{H^2}{G_0^2}} \left(\frac{L}{G_0} \cos l \cos g - \sin l \sin g \right) = 0. \]

100
Здесь L согласно формуле (3) — функция от l. Функцию S_1 будем искать в виде

$$S_1 = X(l) \sin g + Y(l) \cos g + Z(l).$$

Коэффициенты X, Y и Z удовлетворяют следующей системе уравнений:

$$(c - a \sin^2 l - b \cos^2 l) L \frac{dX}{dt} - G_0 (a \sin^2 l + b \cos^2 l) Y = \sqrt{1 - \frac{H^2}{G_0^2}} \cdot \sin l,$$

$$= - \sqrt{1 - \frac{H^2}{G_0^2}} \cdot \frac{L}{G_0} \cos l,$$

$$(c - a \sin^2 l - b \cos^2 l) L \frac{dZ}{dt} = - \frac{H}{G_0} \sqrt{1 - \frac{L^2}{G_0^2}} \cdot \cos l.$$

Два первых уравнения этой системы удобно записать в форме

$$\frac{dX}{dt} - f(l) Y = \varphi_1,$$

$$\frac{dY}{dt} + f(l) X = \varphi_2,$$

$$f(l) = \frac{a \sin^2 l + b \cos^2 l}{\sqrt{b - a \sin l} \sqrt{c - a \sin^2 l - b \cos^2 l}},$$

$$\varphi_1 = \sqrt{1 - \frac{H^2}{G_0^2}} \cdot \frac{\sin l}{G_0 (c - a \sin^2 l - b \cos^2 l)},$$

$$\varphi_2 = - \sqrt{1 - \frac{H^2}{G_0^2}} \cdot \frac{\cos l}{G_0 (c - a \sin^2 l - b \cos^2 l)}.$$

Введем комплексно-значные функции $\psi = X + iY$ и $\varphi_1 + i\varphi_2$. Уравнения (4) претерпят в следующем виде:

$$\frac{d\psi}{dt} + i f(l) \psi = \varphi(l).$$

Так как это уравнение линейно по ψ, его общее решение есть

$$\psi = e^{-i\theta(l)} \int_0^l e^{i\theta(x)} \varphi(x) dx, \quad \theta = \int f(x) dx.$$ (5)

Здесь α — произвольная постоянная. Интеграл $\int f(x) dx$ можно вычислить. Он равен

$$\theta(x) = \arcsin \sqrt{\frac{-a - c}{b - c}} \cos x +$$

$$+ \frac{b}{V(b - a)(c - b)} \ln \frac{\sqrt{c - a \cdot \sin x}}{V(c - a \sin^2 x - b \cos^2 x - b \cos x)}.$$

Поскольку функция $\psi(l)$ должна быть аналитична при $l = 0$, а $\exp - i\theta(l)$ имеет особенность в этой точке, в формуле (5) постоянную α надо положить равной нулю.
Аналогично можно записать уравнения для асимптотической поверхности, проходящей через траекторию возмущенного периодического решения Γ_2:

$$L = \frac{\partial S'}{\partial t}, \quad G = \frac{\partial S'}{\partial g}, \quad S' = S_0' + \mu S_1' + \ldots,$$

$$S_0' = G_0 g + \int_0^\pi \frac{\sqrt{b-a} \sqrt{c-a} \sin x}{\sqrt{c-a} \sin^2 x - b \cos^2 x} \, dx, \quad S_1' = X'(l) \sin g + Y'(l) \cos g + Z'(l),$$

$$\psi' = X' + iY' = e^{-i\theta(l)} \int_0^l e^{i\theta(x)} \psi(x) \, dx.$$

Предположим, что эти сепаратрисы совпадают. Тогда, очевидно, $\psi = \psi'$ и, следовательно, интеграл

$$I = \int_0^\pi e^{i\theta(x)} \psi(x) \, dx$$

dолжен равняться нулю. Учитывая равенство

$$\exp i \arcsin \sqrt{\frac{b-a}{c-a}} \cos x =$$

$$= \frac{1}{\sqrt{c-a}} \left(V \sqrt{c-a} \sin^2 x + b \cos^2 x + i \sqrt{b-a} \cos x \right),$$

записываем этот интеграл в явном виде:

$$I = \frac{1}{G_0} \sqrt{1 - \frac{H^2}{G_0^2}} \left(\sqrt{\frac{c-a}{b-a}} \int_0^\pi \frac{\sqrt{c-a} \sin x}{\sqrt{c-a} \sin^2 x - b \cos^2 x + V \sqrt{c-b} \cos x} \right) \times$$

$$\times \int_0^\pi \frac{dx}{c-a \sin^2 x - b \cos^3 x},$$

где $\beta = \frac{b}{\sqrt{(b-a)(c-b)}}$. Выполнив замену переменной по формуле

$$x = \arccotg \frac{1}{2} \sqrt{\frac{c-a}{c-b}} \frac{1-t^2}{t}, \quad 0 < t < \infty.$$

Тогда

$$I = \frac{2}{G_0} \sqrt{1 - \frac{H^2}{G_0^2}} \left\{ \int_0^\infty \frac{t^{1/2}}{1 + t^2} \, dt \right\}.$$

Интеграл в этой формуле легко вычисляется с помощью вычетов. Он равен

$$\frac{\pi}{e^{n/2} + e^{-n/2}}.$$

Следовательно, $I \neq 0$. Полученное противоречие доказывает справедливость теоремы.

102
Отметим, что хотя при малых $\mu \neq 0$ возмущенные асимптотические поверхности не совпадают, однако в общем случае всегда пересекаются по бесконечному множеству точек [3, § 19]. Через эти точки проходят траектории двойко-асимптотических решений, неограниченно приближающиеся при $t \to \pm \infty$ к траекториям возмущенных периодических решений Γ_1 и Γ_2.

§ 3. Возмущение сепаратрис в случае Гесса—Аппельрота. Расщепление сепаратрис — типичная картина в фазовом пространстве возмущенной задачи. Однако в задаче о вращении тяжелого твердого тела с неподвижной точкой сепаратрисы расщепляются не всегда. Рассмотрим случай Гесса—Аппельрота, выделяемый условием [5]:

$$\xi \sqrt{c - b} + \xi \sqrt{b - a} = 0.$$
(Здесь $(\xi, 0, \zeta)$ — координаты центра тяжести в главных осях эллипсоида инерции.) Уравнения движения имеют частный интеграл (типа $\Phi = 0$, когда $\Phi = 0$), который в переменных Депри можно записать так:

$$L = \frac{G \sqrt{b - a \sin^2 l}}{V \sqrt{c - a \sin^2 l - b \cos^2 l}}.$$
(6)

Частный интеграл (6) существует при всех значениях параметра μ и аналитичен по μ, поскольку от μ он вообще не зависит.

Если $\mu = 0$, интеграл энергии и частный интеграл (6) высекают в фазовом пространстве асимптотическую поверхность к периодическим решениям — постоянным вращениям вокруг средней оси инерции. Пока же, что эта инвариантная поверхность не распадается при малых значениях параметра μ. Будем рассматривать только невертикальные по-стоянные вращения, так как в противном случае периодические решения вырождаются в положении равновесия и задача о сепаратрисах теряет смысл.

При $\mu = 0$ инвариантная поверхность является двумерным тором T^2 и фазовое векторное поле на нем имеет два замкнутых цикла γ_1 и γ_2, которые, конечно, совпадают с постоянными вращениями вокруг средней оси инерции Γ_1 и Γ_2. Циклы γ_1 и γ_2 невырождены, что следует из невырожденности периодических решений Γ_1 и Γ_2 (см. [4]). При малых μ инвариантный тор T^2 не исчезает, а лишь немного изменяет свое положение в фазовом пространстве. Так как векторное поле на нем тоже мало изменяется, замкнутые циклы γ_1 и γ_2 не исчезают и будут периодическими решениями возмущенной задачи. По теореме о целых функциях, возмущения замкнутых циклов γ_1 и γ_2 совпадут с возмущениями периодических решений Γ_1 и Γ_2. Следовательно, инвариантная асимптотическая поверхность, высекаемая в фазовом пространстве интегралом энергии (1) и частным интегралом (6), при малых значениях параметра μ является замкнутой сепаратрисой возмущенных постоянных вращений вокруг средней оси инерции. Утверждение доказано.

ЛИТЕРАТУРА

3. Пуккаре А. О проблеме трех тел в об. уравнениях динамики. — В кн.: Пуккаре А. Изобр. труды, т. 2. М., 1972.

103
5. Голубев В. В. Лекции по интегрированию уравнений движения тяжелого твердого тела вокруг неподвижной точки. М., 1953.

Поступила в редакцию
22.3 1976 г.

V. V. Kozlov

SPLITTING OF SEPARATRICES IN THE PERTURBED EULER—POINSOT PROBLEM

The motion of a heavy rigid body about a fixed point is considered as a perturbation of the Euler—Poinsot case. The splitting of the separatrices of this case is strictly established when the centre of gravity is transferred from the fixed point to a position on the middle principal axis.