8.
Bizyaev I. A., Kozlov V. V.
Homogeneous systems with quadratic integrals, Lie–Poisson quasi-brackets, and the Kovalevskaya method
Sbornik: Mathematics, 2015, vol. 206, no. 12, pp. 29–54
Abstract
pdf (481.65 Kb)
We consider differential equations with quadratic right-hand sides which admit two quadratic first integrals, one of which is a positive definite quadratic form. We present general conditions under which a linear change of variables reduces this system to some "canonical" form. Under these conditions the system turns out to be nondivergent and is reduced to Hamiltonian form, however, the corresponding linear Lie–Poisson bracket does not always satisfy the Jacobi identity. In the three-dimensional case the equations are reduced to the classical equations of the Euler top, and in the four-dimensional space the system turns out to be superintegrable and coincides with the Euler–Poincaré equations on some Lie algebra. In the five-dimensional case we find a reducing multiplier after multiplication with which the Poisson bracket satisfies the Jacobi identity. In the general case, we prove that there is no reducing multiplier for $n>5$. As an example, we consider a system of Lotka–Volterra type with quadratic right-hand sides, which was studied already by Kovalevskaya from the viewpoint of the conditions for uniqueness of its solutions as functions of complex time.
Keywords: |
first integrals, conformally Hamiltonian system, Poisson bracket, Kovalevskaya system, dynamical systems with quadratic right-hand sides |
Citation: |
Bizyaev I. A., Kozlov V. V., Homogeneous systems with quadratic integrals, Lie–Poisson quasi-brackets, and the Kovalevskaya method, Sbornik: Mathematics, 2015, vol. 206, no. 12, pp. 29–54 |
Full text: |
pdf
(481.65 Kb)
|
Journal Info